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Abstract

The United States Air Force air-to-air Weapons System Evaluation Program

(WSEP) targets unmanned aerial drones in hundreds of live-fire missile tests each year.

The current QF-4 drone inventory is expected to be depleted by 2015. The QF-16 Full

Scale Aerial Target FSAT contract has been awarded to convert usable early model

F-16’s into remote-controlled drones. The QF-16 will provide a highly maneuverable,

realistic testing environment for 5th generation fighters. When a missile fails to

destroy a target aircraft, a scoring system is useful in determining what caused the

failed intercept. A correct estimate of a missile’s flight path is critical for weapons

test and evaluation to ensure accuracy. This research analyzes the use of Kalman

smoothing techniques with Frequency-Modulated Continuous Wave (FMCW) radar

sensors arranged on the QF-16 platform to satisfy these goals.

Estimating the trajectory of an air-to-air missile is difficult due to high dynamic

capabilities, short time of flight, and advanced guidance systems. Kalman smoothers

lend themselves to tasks such as post-flight trajectory estimation because they com-

bine the utility of forward and backward-propagating Kalman filters. The combined

result is optimal post-flight missile scoring.

Six Kalman smoothers (EKS, IEKS, SFRA EKS, UKS, IUKS, and SFRA UKS)

are simulated. The performance assessment is based on multiple Monte Carlo com-

parisons among all algorithms with a variety of missile dynamics models and air-to-air

engagment scenarios. Simulations are conducted utilizing varying levels of injected

noise and sensor availability to provide a comprehensive analysis of potential per-

formance benefits. This technical assessment provides the basis for recommendation

of the Unscented Kalman Smoother (UKS) as the DoD/USAF standard for post-

processing and scoring live-fire missile data.
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Air-to-Air Missile

Enhanced Scoring with Kalman Smoothing

I. Introduction

1.1 Motivation and Problem Description

A correct estimate of a missile’s flight path is essential to USAF test and evalu-

ation for ensuring accuracy and functionality. The United States Air Force air-to-air

Weapons System Evaluation Program (WSEP) targets unmanned aerial drones in

hundreds of live-fire missile tests each year [15]. The current QF-4 drone inventory is

expected to be depleted by 2015. The QF-16 Full Scale Aerial Target (FSAT) con-

tract has been awarded to convert usable early model F-16’s into remote-controlled

drones. The QF-16 will provide a highly-maneuverable, realistic testing environment

for 5th generation fighters. The delivery of the first six QF-16’s is currently sched-

uled for 2014. In order to accomplish their mission, WSEP requires a scoring system

capable of estimating the trajectory of a missile relative to the drone aircraft. When

a missile fails to destroy a target aircraft, this scoring system is useful in analyzing

whether a missile suffered a guidance failure, decoyed on aircraft countermeasures, or

lacked energy or maneuverability to complete the intercept. Additionally, many firing

profiles are designed to be “near misses” for drone preservation. Missile flight path

reconstruction near the drone allows evaluation of the missile’s performance. This

research analyzes the use of Kalman smoothing techniques coupled with Frequency-

Modulated Continuous Wave (FMCW) radar sensors carefully arranged on the QF-16

platform to satisfy these goals.

1.2 Overview

The purpose of this research is to develop a series of enhanced Kalman smoothers

to glean maximum benefit from post-flight live-fire missile test data for trajectory
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reconstruction and missile scoring. A secondary objective is to quantify the improve-

ment of post-flight analysis versus real-time analysis. This research refines previous

work to reconstruct the flight path of an air-to-air missile relative to a target (QF-16

drone) aircraft. The dynamics models, measurement models, engagement scenarios,

and truth data are all used from previous work [11]. The Extended Kalman Fil-

ter (EKF) and Unscented Kalman Filter (UKF) also previously developed form the

performance baseline for this effort.

Two development paths were followed to analyze the performance potential of

Kalman smoothing for post-flight trajectory estimate improvement. First-order post-

flight approximation is performed by the Extended Kalman Smoother (EKS), Iterated

Extended Kalman Smoother (IEKS), and Single Filter Reactive Adaptation (SFRA)

EKS. Second-order approximation is handled by the Unscented Kalman Smoother

(UKS), the Iterated Unscented Kalman Smoother (IUKS), and the Single Filter Re-

active Adaptation (SFRA) UKS developed for this research. The real-time versions

of the iterated and SFRA filters (IEKF, SFRA EKF, IUKF, SFRA UKF) are also

analyzed for comparison with the original EKF and UKF.

1.3 Assumptions

This research builds upon existing work with the additional assumption that

missile scoring will be performed post-flight. Accordingly, this Kalman smoother-

based approach to missile scoring cannot be performed in real time. The RF sensor

arrangement is designed to resemble the geometry provided by the QF-16 platform.

The sensor characteristics are modeled after a commercial-off-the-shelf (COTS) RF

sensor with a maximum range of 350 meters [11]. This research is limited in scope

to assess the performance improvement of various post-flight Kalman smoothers over

previously attempted real-time Kalman filters when estimating the trajectory of an

inbound air-to-air missile.
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1.4 Problem Approach

This thesis generates high-fidelity truth data which is noise-corrupted and passed

to a Kalman smoother for reconstruction. The Kalman smoothers (EKS, IEKS, SFRA

EKS, UKS, IUKS, and SFRA UKS) are simulated using MATLAB. Specifically, sim-

ulation tools ProfGen [8] and Argos 3.0 [1] are used to process sample target and

shooter trajectories into a high fidelity ’truth’ missile trajectory. Noise is be added

to truth data before it is sampled and used as representative sensor measurements.

The Kalman smoothers are employed with the sensor measurements to reconstruct

the true missile trajectory. The performance assessment is based on multiple Monte

Carlo comparisons among all the Kalman smoothers with a variety of high fidelity

missile models. Simulations are conducted utilizing varying levels of injected noise

and random sensor occlusion to provide a comprehensive analysis of potential per-

formance benefits. This technical assessment provides the basis for recommendation

of the Unscented Kalman Smoother (UKS) as the DoD/USAF standard for post-

processing and scoring live-fire missile data. See Chapter IV for the motivation and

methodology for creating the various Kalman filters and smoothers.

Estimating the trajectory of an air-to-air missile is difficult due to high dynamic

capabilities, short time of flight, and advanced guidance systems. Kalman smoothers

lend themselves to tasks such as post-flight trajectory estimation because they op-

timally combine forward and backward-propagating Kalman filters. The combined

result is optimal post-flight missile scoring.

1.5 Research Contributions

This research is focused on providing the best available post-flight estimation of

an inbound missile’s trajectory. This research answers the following questions based

on analytics and discrete simulations:

• Why use a post-processing smoother instead of a real-time forward-only filter?
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• How does accuracy and precision compare using different Kalman smoothing

techniques?

• How does performance vary using different missile dynamics models and en-

gagement geometries?

• What is the overall precision of this scoring system based on simulated perfor-

mance of COTS sensors with Kalman smoothing applied?

• What is the optimal Kalman smoothing technique for post-processing live fire

missile data?

• Using this optimal technique, how large is the expected mean position error of

a simulated air-to-air missile trajectory?

1.6 Thesis Outline

A discussion of previous research in these subject areas is provided in Chap-

ter III. The mathematical basis for the development of the six Kalman smoothers

is available in Chapter II. The sensor suite physical layout, dynamics models, fil-

ter initialization, truth model, and air-to-air engagement scenarios are described in

Chapter IV. The results, which provide a performance stratification for all of the

Kalman Smoothers is available in Chapter V. Chapter VI provides a summary of the

most important results as well as recommendations for future research in this area.

Appendix A contains the results of all simulation profiles for each Kalman smoother

variant.
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II. Mathematical Background

2.1 Mathematical Notation

This thesis uses the following mathematical notation:

• Scalars: Scalars are denoted by lower or upper case non-bold characters (e.g.,

x or X)

• Vectors: Vectors are represented by lower case characters in bold font (e.g., x)

• Matrices: Matrices are denoted by upper case characters in bold font or upper

case script characters (e.g., X or X )

• Vector Transpose: A vector transpose is indicated by a superscript Roman T

(e.g., xT )

• Estimated Variables: An estimated variable is designated by the use of a hat

character (e.g., x̂)

• Reference Frame: If a variable’s reference frame is designated, it is annotated

by a superscript character (i.e., xn is the vector x in the n frame)

• Direction Cosine Matrices: A direction cosine matrix from frame i to frame

n is represented by Cn
i

• Discrete Time: The subscript k is used to denote the k -th time step in a

discrete time sequence (i.e., x̂k is an estimate of the vector x at time k)

• Apriori Estimate: An estimate of a system’s navigation parameters prior

to incorporating a measurement update is designated with a superscript minus

(e.g., x̂k|k−1)

• Aposteriori Estimate: An estimate of a system’s navigation parameters after

incorporating a measurement update is designated with a subscript indicating

the estimate is predicated upon a filter estimate (e.g., x̂k|k)

• Iterated Estimate: An estimate of a system’s navigation parameters after

incorporating a measurement update, is designated with a subscript indicating

the estimate is predicated upon an observed measurement (e.g., x̂+
k|k)
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2.2 The Kalman Filter

The world is filled with systems that exhibit random behavior. If we can make

simplifying assumptions to characterize the nature of this behavior, we can attempt to

model these real-world systems. The Kalman Filter [6] is a commonly used recursive

algorithm which can provide a statistically optimal estimate of stochastic systems.

The KF has two components, a dynamics model and an observation model. The

dynamics model describes the expected behavior of the system as well as system

dynamics uncertainties. For example, an air-to-air missile’s dynamics are partially

governed by its velocity and achievable turn rate, yet disturbances such as wind

introduce uncertainties. The KF uses this model to predict the changes in system

states between measurement updates. Process noise is the stochastic component

associated with the dynamics model. The second component is the observation model

which provides a mathematical relationship between sensor measurements and the

system states. This relationship can be used to update system states based on the

sensor data. Measurement noise is the stochastic component associated with the

observation model. The power of the KF lies in its ability to update the system state

estimates by optimally weighting the measurement data with the predictions of the

states based on the dynamics model.

There are several simplifying assumptions that are made about the stochastic

nature of the system before we can ensure the KF produces an optimal estimate. The

process and measurement noise components are assumed to be Gaussian processes.

This means that all information regarding the stochastic components are captured by

the first and second moments (expected value and covariance). The Gaussian noise

sources are assumed to be zero-mean, additive, and uncorrelated in time. Using state

space representation, the KF assumes a linear system dynamics model of the form

ẋ(t) = F (t)x(t) +B(t)u(t) +G(t)w(t) (2.1)
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which represents the system dynamics. The variable x(t) is a vector of system states,

u(t) is an input vector and w(t) the process noise vector. The relationship between

the inputs, process noise, and system state vectors is defined by the F (t), B(t) and

G(t) matrices. The process noise covariance matrix is defined as

E[w(t)wT (t)] , Q. (2.2)

The Q matrix contains the covariance and cross-covariance values of the process noise

and can be increased to account for a low fidelity dynamics model [6].

In state space, the KF assumes a linear measurement model of the form

zk = Hkxk + vk (2.3)

where zk is a vector of measurements, the matrix Hk relates the measurements to

current states and vk is a vector of zero-mean, additive, white, Gaussian measurement

noise. The measurement noise covariance kernel is defined by

E[vkv
T
j ] = Rδkj (2.4)

where R is the measurement noise covariance. The R matrix contains the covari-

ance and cross-covariance values of the measurement noise components and can be

increased to account for low quality sensor data. The Q to R ratio is an indicator of

how trustworthy the dynamics model is in relation to the measurement model. Values

withinQ andR can be modified as tuning parameters to optimize KF performance [6].

The KF must be employed as a discrete-time algorithm to effectively handle

digitally sampled data in Equation 2.3 as well as to implement Equation (2.1) on a

computer. The dynamics model difference equation becomes

xk = φk−1xk−1 +Bk−1uk−1 +wk−1 (2.5)
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where the discrete white, Gaussian noise strength is Qd. The discrete input uk, is

formed by sampling u at the current time step and assuming it remains constant over

the propagation interval. This research relies on the Van Loan method to convert

from a continuous-time differential equation to a discrete-time difference equation [3].

Beginning with the dynamics model, Equation (2.1), the matrix

A =

−F GWGT

0 F T

∆t (2.6)

is created. The sample time, ∆t, is the time delay between propagation steps. The

matrix

B = eA =

... φ−1Qd

0 φT

∆t (2.7)

contains the state transition matrix, φ. The discrete-time noise strength, Qd, can be

calculated B using the Van Loan method in linear algebra.

The system inputs are assumed to be deterministic and all noise sources are

assumed to be zero-mean, additive, white, and Gaussian. Since the state vector is

a function of these two components, it has a Gaussian PDF and can be completely

described by its expected value and covariance.

The discrete-time propagate equations are described by

x̂k|k−1 = φk−1x̂k−1|k−1 +Bk−1uk−1 (2.8)

P k|k−1 = φkP k−1|k−1φ
T
k +Qd

(2.9)

where x̂k|k−1 is the apriori state estimate and P k|k−1 is the associated covariance.

Measurement updates are calculated by
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x̂k|k = x̂k|k−1 +Kk[zk −Hkx̂k|k−1] (2.10)

and

Kk = P k|k−1H
T
k [HkP k|k−1H

T
k +Rk]

−1. (2.11)

The update covariance matrix is given by

P k|k = P k|k−1 −KkHkP k|k−1 (2.12)

where Kk defined in Equation ( 2.11) is the Kalman gain which optimally weights the

results of the dynamics and observation models based on the current measurement

update [6]. P k|k is the covariance associated with the new state estimate. At this

point, the KF returns to Equation (2.8) and the aposteriori state estimate, x̂k|k,

becomes the new apriori state estimate for next propagation step x̂k+1|k.

2.2.1 Extended Kalman Filter . The Extended Kalman filter (EKF) is the

nonlinear version of the Kalman Filter. The EKF uses the first-order Taylor series

expansion (Jacobian) method to linearize the dynamics and/or observation model.

This research uses linearized dynamics models and a nonlinear measurement model.

Consequently, only the observation model is linearized. The assumption of zero-

mean, additive, white Gaussian noise sources is unchanged from the conventional KF.

Therefore, the mean and covariance completely characterize the state estimate.

Since its inception in 1965, the EKF has become the industry standard for

theoretical non-linear state estimation [6]. The EKF relies on first-order Taylor series

approximations of the input and output equations to propagate and update the error

states of the system state variables. Therefore, one must assume error states are

adequately modeled by 1st order approximation. As one might predict, the EKF

is relatively easy to implement. This is offset by poor tracking performance when
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the system dynamics or observation functions are not well-represented by a 1st order

approximation. The nonlinear equation

ẋ = f(x, u) +Gw (2.13)

must be linearized by calculating the Jacobian

F ,
∂f

δx
|x̂k|k−1

(2.14)

This research focuses solely on linearized 3-D missile dynamics models (con-

stant velocity, constant turn rate, and constant acceleration). As mentioned, the

observation model is distinctly nonlinear. The general form of which is

zk = h[xk] + vk (2.15)

where zk is the measurement, h[.] is a nonlinear observation function and vk is the

discrete-time additive white Gaussian noise component.

In order to linearize the observation function about the current state vector, a

Jacobian matrix is calculated by performing a first-order Taylor expansion of each

nonlinear function with respect to the current states. This Jacobian is evaluated at

the current state estimate

Hk =
δh

δx
|x̂k|k−1

(2.16)

Afterwards, a nominal (predicted) measurement is generated based on the current

state estimate

ẑk = h[x̂k|k−1] (2.17)
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The final step is defining an error state, δz, which is the difference between the

measurement and the nominal (predicted) measurement

δzk = zk − ẑk (2.18)

Described in continuous time, the linear CV dynamics model is [2]

ẋ(t) = Fx(t) +Gw(t) (2.19)

where

F =

 03x3 I3x3

03x3 03x3

 (2.20)

G =

 03x3

I3x3

 (2.21)

and the magnitude of the noise vector w(t) is defined by

E[w(t)w(t+ τ)] = Q =


q 0 0

0 q 0

0 0 q

 (2.22)

where q becomes a tuning parameter describing the uncertainty associated with the

model.

Instead of modeling the acceleration components as zero-mean, white, Gaus-

sian variables, the CA model uses three additional states to propagate acceleration

components. The CA model can be described as

x =
[
x y z vx vy vz ax ay az

]T
. (2.23)
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The F and G matrices can be described as [2]

F =


03x3 I3x3 03x3

03x3 03x3 I3x3

03x3 03x3 03x3

 (2.24)

G =

 06x3

I3x3

 . (2.25)

The dynamic noise strength matrix, Q, is in the same form as Equation (2.22).

The CT model contains exactly the same nine navigation states as the CA

model. The main difference is the velocity navigation states are propagated according

to an assumed constant turn rate, ω. The CT model is described mathematically as

ω =
|v × a|
|v|2 (2.26)

The acceleration states are propagated according to

ȧ(t) = −ω2v(t) +w(t). (2.27)

The continuous time linear dynamics matrices are

F =


03x3 I3x3 03x3

03x3 03x3 I3x3

03x3 A 03x3

 (2.28)

A =


−ω2 0 0

0 −ω2 0

0 0 −ω2

 (2.29)
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G =

 06x3

I3x3

 (2.30)

where v(t) is the 3D velocity vector and ω(t) is a corresponding vector of independent,

zero-mean, white Gaussian noise sources. All three linearized dynamics models (CV,

CA, CT) are functions of time which allows them to account for nonlinear effects.

Since all three dynamics models are linearized, the propagate equations are

unchanged from the conventional KF. The post-update state estimate is calculated

with

x̂k|k = x̂k|k−1 +Kkδzk. (2.31)

The EKF functions very similarly to the conventional KF with the exception of the

Jacobian linearization of the observation function, hk, in the measurement equations.

2.2.2 Iterated Extended Kalman Filter. The IEKF functions very similarly

to the EKF with the exception of multiple iterations of Equations (2.32) through

(2.33) until xn+1
k −xnk is sufficiently small. The goal of the IEKF is to relinearize h[· ]

to improve estimation quality. The purpose of iteration is converge on a better state

estimate before propagating to the next time step. As expected, this process requires

heavy computation but should yield results similar to a 2nd order Gauss filter [7].

1. The IEKF performs the first iteration of each time step, tk, the same as the

simple linearized EKF Equations (2.8) through (2.10). The IEKF performs

iteration from n = 0, 1 . . . N − 1 on

Kn
k = P k|k−1[H

n
k ]T [Hn

kP k|k−1[H
n
k ]T +Rk]

−1 (2.32)

and
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x̂n+1
k = x̂k|k−1 +Kn

k [zk − hnk −Hn
k [x̂k|k−1 − x̂nk ]] (2.33)

where the initial x̂nk |n=0 is the first aposteriori estimate, x̂k|k and the initial

Ĥ
n

k |n=0 is the first aposteriori H [· ] matrix, Ĥk|k and.

2. Once the newly iterated aposteriori state estimate, x̂n+1
k is obtained, it is com-

pared to the previous iteration, x̂nk by

xn+1
k − xnk < CI (2.34)

where CI is a user-defined threshold.

3. If Equation (2.34) is not satisfied, the filter stays on the current time step tk

and reevaluates h[· ] to achieve a better x̂n+1
k .

x̂n+1
k → x̂nk (2.35)

4. Once Equation (2.34) is satisfied or the maximum number of N iterations is

met, the result becomes the iterated aposteriori state estimate, x̂+
k , and the

IEKF moves on to the next time step, tk+1 and the process starts again.

x̂n+1
k → x̂+

k (2.36)

tk → tk+1 (2.37)

Note that x̂+
k is the final state estimate resulting from the iteration process.

2.2.3 Single Filter Reactive Adaptation Extended Kalman Filter. Although

conceived independently, the SFRA EKF is quite similar to an algorithm introduced

by Blackman and Popoli [2]. The SFRA EKF does not guarantee optimality but

is able to detect abrupt maneuvers through residual monitoring. It functions very
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similarly to the EKF except it iterates through Equations (2.11) through (2.10) using

a re-linearized h[.] from Equation (4.25). In fact, the first iteration of the SFRA

EKF is identical to the EKF. After the first iteration, the algorithm does not repeat

propagation Equations (2.8) and (2.9). The SFRA EKF monitors the mean of the

filter residuals which are compared to a threshold value set by the filter designer.

The SFRA EKF performs the first iteration of each time step, tk identically to

linearized EKF equations (2.8) through (2.10). Once the first measurement residuals

are obtained,

1. Test the 2-norm of i residuals (i = 1,2,...,M) versus a threshold based on the

norm of the square root of the corresponding variance Sk multipled by a tuning

parameter CR,

Sk = HkP k|k−1H
T
k +Rk (2.38)

||γ [1:M ]|| < CR||
√
Sk|| (2.39)

where
√
Sk is obtained using the Cholesky decomposition.

2. If Equation (2.39) is not satisfied, do not proceed past the current time step,

tk. Instead, shift the aposteriori estimate, xnk|k, towards the measurement.

3. Re-run the EKF algorithm, skipping the EKF propagation steps.

4. Relinearize h[· ] using the new aposteriori estimate, xnk|k, using

Hn
k|k =

δh

δx
|x̂n

k|k
. (2.40)

Afterwards, a new measurement prediction is generated based on the current

state estimate

ẑnk|k = h[x̂nk|k]. (2.41)
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Observations are re-gated based on x̂nk|k which forms a new measurement znk . A

new Kalman gain is calculated and new residuals are obtained, γni , which will

attempt to satisfy Equation (2.39),

Kn
k = P k|k−1H

nT
k|k−1[H

n
k|k−1P k|k−1H

nT
k +Rk]

−1 (2.42)

γn = znk − ẑnk . (2.43)

Next, the measurement update is performed. The newly formed Kalman gain

from Equation (2.42) determines how much emphasis will be placed on the

dynamics model versus the measurement. The measurement update is

x̂n+1
k|k = x̂nk|k +Kn

k [znk − h[x̂nk|k]] (2.44)

5. If Equation (2.39) is not satisfied, the SFRA EKF iterates again until the filter

has moved the state estimate x̂nk|k sufficiently towards the measurement cluster.

Once Equation (2.39) is satisfied or the maximum number of N iterations is

met, the result becomes the iterated aposteriori state estimate, x̂+
k|k, and the

SFRA EKF moves on to the next time step, tk+1 and the process starts again.

xn+1
k|k → x+

k|k (2.45)

tk → tk+1 (2.46)

The SFRA EKF moves the state estimate towards the measurement in small

steps until the residuals are small enough to continue. This effectively reduces the

Q/R ratio (placing more emphasis on the centroid of the measurement cluster) when

the measurement centroid is far from the predicted measurement. This achieves a
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Figure 2.1: SFRA Filter with Residual Monitoring

basic form of maneuver detection. The downside is that the filter does not perform

well when Q or R are mismatched. Figure 2.1 shows the nominal measurement

moving towards the actual measurement based on residual monitoring.

2.2.4 Synopsis of EKF versus UKF. The UKF is a relatively new ap-

proach to system state estimation. This new version of the Kalman filter has several

key advantages over the tried-and-true EKF. The UKF relies on a novel nonlinear

transform called the unscented transformation. The basic idea behind the unscented

transformation is that “it is easier to approximate a Gaussian distribution than it is

to approximate an arbitrary nonlinear function or transformation” [4].

The EKF works well when systems are nearly linear over the update interval be-

cause it relies on successive first-order approximations of the system. The UKF works
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well even with nonlinear systems because it does not directly linearize the state esti-

mate. Instead, sample points (called “sigma” points) are created to parameterize the

mean and covariance values of the state variables. These sigma points are transformed

using the unscented transform to new parameterized terms that are propagated and

updated using a modified Kalman filter.

Like the EKF, the UKF requires that the noise sources be Gaussian. The UKF

differs because it does not attempt to linearize the system. The UKF approximates a

Gaussian pdf up to 2nd-order terms and is arguably easier to implement. Typically, the

EKF’s higher instability requires that process noise covariance be artificially increased

to account for the linearization errors made by the filter.

2.2.5 Unscented Kalman Filter . The UKF is a relatively new development

and is not limited by the linear approximation issues of the EKF. The probability

distribution of the state variables is still assumed to be Gaussian, but is specified

using a set of carefully chosen sample points [4]. These “sigma” points do a much

better job describing the true mean and covariance of the distribution. The basis

of the UKF is the unscented transform [4]. This is used to perform a nonlinear

transform of the sigma points into measurement space without losing all higher-order

terms (as with the EKF). In fact, the UKF can capture the mean and covariance of the

states accurately to the 3rd order (Taylor series expansion). These sigma points are

propagated and updated along with the state estimate. The UKF does an excellent

job handling nonlinearities with Gaussian-distributed variables but is slightly more

difficult to implement than the EKF.

The estimated state and covariance are augmented with the mean and covariance

of the process noise. A set of 2L+1 sigma points is derived from the augmented state

and covariance where L is the number of states [4]. These sigma points can be

described as

χ0 = x̄ (2.47)
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χi = x̄+
(√

(L+ λ)Px

)
i
i = 1 . . . L (2.48)

χi = x̄−
(√

(L+ λ)Px

)
i−L

i = L+ 1 . . . 2L (2.49)

where the tuning parameter, λ was chosen to be commensurate with the recommenda-

tion of Julier and Uhlmann: λ = α2(κ+L)−L = 0.
(√

(L+ λ)Px

)
i

is the ith column

of the matrix square root. This is calculated using the Cholesky decomposition.

The weighting values for the mean and covariance are [4]

w
(m)
0 =

λ

L+ λ
(2.50)

w
(c)
0 =

λ

L+ λ
+ 1− α2 + β (2.51)

w
(m)
i = w

(c)
i =

1

2(L+ λ)
(2.52)

where superscripts m and c denote mean and covariance respectively. The tuning

parameters α and κ control the spread of the sigma points. For this research, tuning

values are α = 10−3, κ = 0. β is related to the distribution of x. A value of β = 2 is

used because the state vector PDF is assumed to be Gaussian.

The UKF propagate equations are expressed as [4]

x̂k|k−1 =
2na∑
i=0

w
(m)
i X x

i,k|k−1, where X x
i,k|k−1 = f [X x

i,k−1|k−1,uk−1,X
w
i,k−1|k−1] (2.53)

P xx
k|k−1 =

2na∑
i=0

w
(c)
i [X x

i,k|k−1 − x̂i,k|k−1][X
x
i,k|k−1 − x̂i,k|k−1]

T (2.54)

The propagation step uses the process model to predict the state vector at the next

time step. The measurement prediction, ẑk|k−1, and the residual covariance, P zz are

calculated according using the nonlinear observation function
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ẑk|k−1 =
2na∑
i=0

w
(m)
i Z x

i,k|k−1, where Z x
i,k|k−1 = h[X x

i,k|k−1,X
r
i,k|k−1] (2.55)

and

P zz
k|k−1 =

2L∑
i=0

w
(c)
i [Z x

i,k|k−1 − ẑi,k|k−1][Z
x
i,k|k−1 − ẑi,k|k−1]

T (2.56)

The cross correlation of the measurement and state vector, P xz, is calculated

using

P xz
k|k−1 =

2L∑
i=0

w
(c)
i [X x

i,k|k−1 − x̂i,k|k−1][Z
x
i,k|k−1 − ẑi,k|k−1]

T (2.57)

The Kalman gain, K, is now expressed in terms of residual covariance, P zz and

measurement-state cross correlation P xz according to

Kk = P xz
k|k−1[P

zz
k|k−1]

−1 (2.58)

The last step is the measurement update. The newly formed Kalman gain from

Equation (2.58) determines how much emphasis will be placed on the dynamics model

versus the measurement. The measurement update is

x̂k|k = x̂k|k−1 +Kk[zk − h[x̂k|k−1]] (2.59)

P k|k = P k|k−1 −KkP
zz
k|k−1K

T
k (2.60)

2.2.6 Iterated Unscented Kalman Filter . The IUKF functions similarly to

the UKF with the exception of multiple iterations of Equations (2.61) through (2.62)

until xn+1
k −xnk is sufficiently small. The goal of the IUKF is to iteratively reevaluate,
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h[.] to improve estimation quality. It should be noted that this implementation is

unstable because the regeneration of sigma points about the iterated h[.] does not

guarantee convergence. Often, the algorithm will reach the maximum number of

iterations without converging on a satisfactory state estimate. This explanation is

included for the sake of completeness.

1. The IUKF performs the first iteration of each time step, tk, the same as the

basic UKF Equations (2.47) through (2.60). The IUKF performs iteration n =

1, 2 . . . N on

ẑnk|k−1 =
2na∑
i=0

w
(m)
i Z xn

i,k|k−1, where Z xn
i,k|k−1 = h[X xn

i,k|k−1,X
rn
i,k|k−1] (2.61)

and

x̂n+1
k = x̂k|k−1 +Kk[zk − h[x̂nk ]] (2.62)

where the initial x̂nk is the first aposteriori estimate, x̂k|k.

2. Once the newly iterated aposteriori state estimate x̂n+1
k is obtained, it is com-

pared to the previous iteration, x̂nk by

x̂n+1
k − x̂nk < CI (2.63)

where CI is a user-define threshold.

3. If Equation (2.63) is not satisfied, the filter stays on the current time step tk

and reevaluates h[·] to achieve a better x̂n+1
k .

x̂n+1
k → x̂nk (2.64)

Z xn
i,k|k−1 = h[X xn

i,k|k−1,X
rn
i,k|k−1] (2.65)
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The filter iterates on h[·] until Equation (2.63) is satisfied. Afterwards, the

IUKF moves on to the next time step, tk+1 and the process starts again. Once

Equation (2.63) is satisfied or the maximum number of N iterations is met,

the result becomes the iterated aposteriori state estimate, x̂+
k|k, and the IUKF

moves on to the next time step, tk+1 and the process starts again.

x̂n+1
k|k → x̂+

k|k, tk → tk+1 (2.66)

The IUKF algorithm is suboptimal and also unstable because the regeneration

of sigma points and transformation through the iterated measurement function does

not always converge. It is not recommended to use this algorithm. These drawbacks

are explained further in Section IV.

2.2.7 Single Filter Reactive Adaptation Unscented Kalman Filter . The

SFRA UKF does not guarantee optimality but adds the flexibility of maneuver detec-

tion using residual monitoring with the accuracy of the Unscented Transform. The

SFRA UKF functions very similarly to the UKF with the exception of multiple iter-

ations of Equations (2.47) through (2.60) without repeating propagation Equations

(2.53) and (2.54). In fact, the first iteration of the SFRA UKF is identical to the

UKF. The SFRA UKF monitors the mean of the filter residuals which are compared

to a threshold value set by the filter designer.

The SFRA UKF performs the first iteration of each time step, tk identically

to UKF Equations (2.47) through (2.60). Once the first measurement residuals are

obtained,

1. Test the 2-norm of i residuals (i = 1,2,...,M) versus a threshold based on the

norm of the square root of the corresponding variance Sk multipled by a tuning

parameter CR,

Sk = HkP k|k−1H
T
k +Rk (2.67)
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||γ [1:M ]|| < CR||
√
Sk|| (2.68)

where
√
Sk is obtained using the Cholesky decomposition.

2. If Equation (2.68) is not satisfied, do not proceed past the current time step,

tk. Instead, shift the aposteriori estimate, xnk|k, towards the measurement.

3. Re-run the algorithm, skipping the UKF propagation steps. Generate 2L + 1

new sigma points about the new apriori estimate, xnk|k−1

4. Recompute the measurement process using the new apriori estimate, xnk|k−1

ẑnk|k−1 =
2na∑
i=0

w
(m)
i Z xn

i,k|k−1, where Z xn
i,k|k−1 = h[X xn

i,k|k−1,X
rn
i,k|k−1] (2.69)

P zzn
k|k−1 =

2L∑
i=0

w
(c)
i [Z xn

i,k|k−1 − ẑni,k|k−1][Z
xn
i,k|k−1 − ẑni,k|k−1]

T (2.70)

5. Recalculate the cross-correlation of the measurement and state vector, P xz,

using

P xzn
k|k−1 =

2L∑
i=0

w
(c)
i [X xn

i,k|k−1 − x̂ni,k|k−1][Z
xn
i,k|k−1 − ẑni,k|k−1]

T (2.71)

6. The new Kalman gain, Kn, is now expressed in terms of residual covariance,

P zz and measurement-state cross correlation P xz according to

Kn
k = P xzn

k|k−1[P
zzn

k|k−1]
−1 (2.72)

7. Next, the measurement update is performed. The newly formed Kalman gain

from Equation (2.72) determines how much emphasis will be placed on the

dynamics model versus the measurement. The measurement update is described
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according to

x̂n+1
k|k = x̂nk|k +Kn

k [znk − h[x̂nk|k]] (2.73)

8. The residuals γ are then calculated with the goal of satisfying Equation (2.68).

If not satisfied, the filter iterates again until the filter has shifted the state

estimate x̂k|kn within a short distance of the measurement cluster centroid.

Once Equation (2.68) is satisfied or the maximum number of N iterations is

met, the result becomes the iterated aposteriori state estimate, x̂+
k|k, and the

SFRA UKF moves on to the next time step, tk+1 and the process starts again.

xn+1
k|k → x+

k|k (2.74)

tk → tk+1 (2.75)

The SFRA UKF moves the state estimate towards the measurement in small

steps until the residuals are small enough to continue. This effectively reduces the

Q/R ratio (placing more emphasis on the centroid of the measurement cluster) when

the measurement centroid is sufficiently far from the predicted measurement. This

achieves a basic form of maneuver detection. Figure 2.1 shows the nominal measure-

ment moving towards the actual measurement based on residual monitoring. The

downside of the SFRA algorithm is reduced accuracy compared to the standard UKF

when Q or R are mismatched.

2.3 Kalman Smoother Development

A smoother is a combination of two Kalman filters. One propagates forward

in time and the other propagates backwards. In general, this results in a better

trajectory estimate because the smoother limits state covariance propagation between

measurements [7]. The smoother errors are typically less than both the forward and

backward filter. The main limitation of this approach is that it cannot be performed

in real time.
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Figure 2.2: Example of a Fixed Interval Smoother

There are several types of optimal smoothers, not limited to the following: fixed

interval, fixed point, and fixed lag. A fixed interval smoother provides the optimal

estimate of x̂k|n(k < n) using measurements from a fixed interval defined by z0 to

zn. A fixed point smoother is similar to the fixed interval, but provides an estimate

of x̂n using measurements from an interval defined from zi to zn, where i is a fixed

value. The fixed lag smoother provides an optimal estimate of x̂k−N |k based on N

previous steps. Since the live fire missile data is being analyzed post-test, the fixed

interval smoother will be used to take advantage of all available measurements, z0 to

zf . Figure 2.2 shows an example of a fixed interval smoother.

2.3.1 Extended Kalman Smoother. The Extended Kalman Smoother (EKS)

is a variation which combines two Extended Kalman Filters (EKF). This type of

smoother was chosen because the EKF is well-understood and provides a meaningful
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baseline for comparison. The EKS optimally combines the results of a forward and a

backward EKF. The forward EKF estimates mean and covariance (x̂fk|k,P
f
k|k) given

all zi for i ≤ k and the backward EKF estimates (x̂bk|k+1,P
b
k|k+1) given all zi for i > k.

The conversion from forward EKF to backward EKF dynamics model requires only

an inversion of input and output data coupled with using the reverse of the dynamics

model

ẋ−t = −f [x−t,u−t,w−t] (2.76)

which results in the transpose of the state transition matrix

φ−k = φTk . (2.77)

The measurement model is also inverted according to

y−t = h[x−t, r−t]. (2.78)

After running two EKF passes (forward and backward) through the data, the

EKS is formed by optimally combining the results of each filter. The combination of

the backward and forward filters is a smoothed mean and covariance (x̂sk,P
s
k) given

by [7]

[P s
k]
−1 = [P f

k|k]
−1 + [P b

k|k+1]
−1 (2.79)

x̂sk = P s
k

[
[P f

k|k]
−1x̂fk|k + [P b

k|k+1]
−1x̂bk|k+1

]
. (2.80)

2.3.2 Iterated Extended Kalman Smoother. The Iterated Extended Kalman

Smoother (IEKS) is formed by combining a forward and a reverse Iterated Extended

Kalman Filter (IEKF). The backwards IEKF dynamics model is obtained by calculat-
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ing the transpose of the transition matrix according to Equation 2.77. The backwards

measurement model is inverted according to Equation (2.78). The process of combin-

ing to the two is identical to the EKS according to Equations (2.79) through (2.80).

Mathematically, it appears the IEKS will give marginal improvement over the EKS.

2.3.3 Single Filter Reactive Adaptation Extended Kalman Smoother. The

Single Filter Reactive Adaptation Extended Kalman Smoother (SFRA EKS) is formed

by combining a forward and a reverse SFRA Extended Kalman Filter (SFRA EKF).

The backwards SFRA EKF dynamics model is obtained by calculating the transpose

of the transition matrix according to Equation (2.77). The backwards measurement

model is inverted according to Equation (2.78). The process of combining to the two

is identical to the EKS according to Equations (2.79) through (2.80).

2.3.4 Unscented Kalman Smoother. The Unscented Kalman Smoother

(UKS) is a variation which combines two Unscented Kalman Filters (UKF). This

type of smoother was chosen because the UKF can provide a quick and accurate (2nd-

order) system approximation. The UKS optimally combines the results of a forward

and a backward UKF. The forward UKF estimates mean and covariance (x̂fk|k,P
f
k|k)

given all zi for i ≤ k and the backward UKF estimates (x̂bk|k+1,P
b
k|k+1) given all zi

for i > k. The conversion from forward UKF to backward UKF dynamics model

requires only an inversion of input and output data coupled with using the reverse of

the dynamics model [7]

ẋ−t = −f [x−t,u−t,w−t] (2.81)

y−t = h[x−t, r−t] (2.82)

.

After running two UKF passes (forward and backward) through the data, the

UKS is formed by optimally combining the results of each filter. The combination of
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the backward and forward filters is a smoothed mean and covariance (x̂sk,P
s
k) given

by [13]

[P s
k]
−1 = [P f

k|k]
−1 + [P b

k|k+1]
−1 (2.83)

x̂sk = P s
k[[P

f
k|k]
−1x̂fk|k + [P b

k|k+1]
−1x̂bk|k+1]. (2.84)

2.3.5 Iterated Unscented Kalman Smoother. The Iterated Unscented Kalman

Smoother (IUKS) is formed by combining a forward and a reverse Iterated Unscented

Kalman Filter (IUKF). The backwards IUKF dynamics model is obtained by invert-

ing the dynamics model according to Equation (3.8). The backwards measurement

model is inverted according to Equation (3.9). The IUKS is formed by combining a

forward and a reverse IUKF according to Equations (3.10) and (3.11). This algorithm

is suboptimal and also unstable because the regeneration of sigma points about the

iterated measurement function does not always converge. This explanation is included

for completeness and it is not recommended to use this algorithm! These drawbacks

are explained further in Section IV.

2.3.6 Single Filter Reactive Adaptation Unscented Kalman Smoother. The

Single Filter Reactive Adaptation Unscented Kalman Smoother (SFRA UKS) is

formed by combining a forward and a backward SFRA Unscented Kalman Filter

(SFRA UKF). The backwards SFRA UKF dynamics model is obtained by inverting

the dynamics model according to Equation (3.8). The backwards measurement model

is inverted according to Equation (3.9). The SFRA UKS is formed by combining a

forward and a reverse SFRA UKF according to Equations (3.10) and (3.11).

2.4 Measurement Environment

This section contains the methodology for taking measurements using the pro-

posed FMCW sensor array located on the QF-16. The sensor locations are fixed in
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relation to the aircraft fuselage and are expressed in the body frame. These aircraft

body frame coordinates are transformed to an Earth-fixed North-East-Down (NED)

navigation frame so that observation calculations can be made. The aircraft and

missile trajectories are expressed in the navigation frame. Accordingly, the Kalman

filter maintains missile trajectory state estimates in this frame. The details of these

reference frames are discussed in Section 2.4.1. Range and velocity calculations are

based on multilateration described in Section 2.4.3 and trilateration in Section 2.4.4.

Techniques used for measurement gating and data association are discussed in Sec-

tion 2.4.5.

2.4.1 Reference Frames. The following reference frames are used in this

research [14]:

• Body frame (b-frame)

• Vehicle-fixed navigation frame (n’-frame)

• Earth-fixed navigation frame (n-frame)

• Earth frame (e-frame)

• Earth-fixed inertial frame (i-frame)

Figure 2.3 depicts the relationship between the Earth-rotating frame (e-frame)

and the Earth-fixed inertial fame (i-frame). The i-frame provides an approximation of

a truly inertial reference frame where Newton’s laws of motion are valid. The origin

is co-located with the center of the Earth and the axes are non-rotating with respect

to fixed stars. The x and y axes form the equatorial plane and the z-axis is co-located

with the Earth’s polar axis. Since this model ignores the Earth’s revolution around

the Sun, it is not truly inertial. The e-frame differs from i-frame only in that the x

and y axes rotate along with the Earth.

The Eath-fixed navigation frame (n-frame) is used for navigation with respect

to a geographic point on the Earth. As seen in Figure 2.4, the x, y, and z-axis point

in the North, East, and Down (NED) directions with respect to a particular point on
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the surface of the globe. The down direction is defined by the local gravity vector.

The vehicle-fixed navigation frame (n’-frame) is projected onto the Earth with the

origin typically chosen to be a fixed point with respect the vehicle.

The origin of the body frame (b-frame) is located at a fixed point with respect

to the body of a vehicle. When defining a b-frame, the vehicle’s center of gravity

(C.G.) is typically chosen as the origin.

2.4.2 Coordinate Transformations. Coordinate transformation are used as

a convenient means of transforming a vector between two reference frames. The

multitude of navigation frames would be relatively useless without a way to move

between them. Direction cosine matrices (DCM) are used in this research to express

a vector in different coordinate frames. DCM’s can be described by

rb = Cb
ar

a (2.85)

xi

xe

ye
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xn’

yn’

zn’

Greenwich
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Local
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Figure 2.1: Inertial, Earth and vehicle-fixed navigation frame.
The inertial and Earth frames originate at the Earth’s center of
mass while the vehicle-fixed navigation frame’s origin is located
at a fixed location on a vehicle.

rotates with respect to the e-frame due to translational motion of the vehicle. The i,

e and n’ -frames are illustrated in Figure 2.1. The n-frame is illustrated in Figure 2.2.

The Earth-fixed navigation frame (n-frame) is an orthonormal basis in !3,

with origin located at a predefined location on the Earth, typically on the surface.

The Earth-fixed navigation frame’s x, y, and z axes point in the north, east, and

down (NED) directions relative to the origin, respectively. As in the previous case,

down is defined as the direction of the gravity vector. In contrast to the navigation

frame, the Earth-fixed navigation frame remains fixed to the surface of the Earth.

While this frame is not useful for very-long distance navigation, it can simplify the

navigation kinematic equations for local navigation routes.

The body frame (b-frame) is an orthonormal basis in !3, rigidly attached to the

vehicle with origin co-located with the navigation frame. The x, y, and z axes point

out the nose, right wing, and bottom of an aircraft, respectively. Strapdown inertial

12

Figure 2.3: Earth-Fixed Reference Frames
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where ra is a vector expressed in an arbitrary frame a, rb is the same vector expressed

in frame b and Cb
a is the DCM.

Euler angles provide a method for deriving the DCM to transform from one-

coordinate system to another by performing a series of three rotations about different

axes [14]. Rotations of φ about the x-axis, θ about the y-axis, and ψ about the z-axis

are expressed mathematically by the DCMs

C1 =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (2.86)
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Figure 2.2: Earth-fixed navigation frame. The Earth-fixed navigation frame is a
Cartesian reference frame which is perpendicular to the gravity vector at the origin
and fixed to the Earth.
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Figure 2.4: Earth-Fixed Navigation Reference Frame
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xb

yb

zb

xb

Figure 2.3: Aircraft body frame illustration. The aircraft
body frame originates at the aircraft center of gravity.

sensors are fixed to the b-frame, although they may not be located at the origin or

aligned with the axes. The b-frame is shown in Figure 2.3.

The camera frame (c-frame) is an orthonormal basis in !3, rigidly attached to a

camera, with origin at the camera’s optical center. The x and y axes point up and to

the right, respectively, and are parallel to the image plane of the camera. The z axis

points out of the camera perpendicular to the image plane. The c-frame is shown in

Figure 2.4.

The binocular disparity frame (c0-frame) is an orthonormal basis in !3, which is

rigidly attached to the lever arm located between cameras in a binocular configuration,

with origin at a specified point on the lever arm. The x, y, and z axes point forward,

right, and down, respectively. The c0-frame is shown in Figure 2.5.
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Figure 2.5: Aircraft Body Reference Frame

C2 =


cos θ 0 − sin θ

0 1 0

− sin θ 0 cos θ

 (2.87)

C3 =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 (2.88)

When performing a transformation from a navigation frame to an aircraft body

frame, the angle ψ represents the angle between the nose of the aircraft and north.

Similarly, the angles θ and φ represent the pitch and roll of the aircraft, respectively..

The product of these DCMs yields a transformation from the reference frame to the

body frame according to
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Cb
n = C3C2C1 (2.89)

Using this DCM a vector rb, defined in the body axes is transformed into the

navigation reference frame by

rn = Cn
b r

b (2.90)

Reversing transformation direction can be performed by using the transpose of

the original DCM Cb
n (i.e., Cn

b = (Cb
n)T ).

2.4.3 Multilateration . Sensor range measurements can be combined to

produce an estimate of missile position via trilateration. Figure 2.6 [11] shows a 2D

example where three separate sensors, P1 - P3, are used to estimate the position of a

target at point B. A single range measurement from P1 constrains the target’s posi-

tion to a circle with radius r1 centered at P1. If two range measurements are obtained

at the same time, the target’s position can be constrained to the intersection of two

circles, with radii of r1 and r2 uniquely centered at P1 and P2, respectively. These

potential target locations are labeled points A and B. If three range measurements

are obtained simultaneously, the target’s location becomes unambiguous and is con-

strained to point B. If any sensor happens to be co-linear with another sensor with

respect to the target, its range measurement will not help uniquely identify the target

position.

This work uses simulated range measurements to reconstruct a missile’s tra-

jectory in 3D space. In this case, a single range measurement specifies a sphere of

potential positions. A second simultaneous range measurement from a uniquely lo-

cated sensor will constrain the target position to the intersection of two spheres (i.e.,

a circle). A range measurement from third sensor will further constrain the target

position to an intersection of two circles (i.e., a point). Similar to the 2D example, a

fourth sensor is required to uniquely identify the target location in 3D.
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Figure 2.6: 2D Trilateration

In the real world, no sensor is able to obtain perfect measurements. If perfect

measurements were available, there would be no utility in using more than the min-

imum number of measurements required to uniquely determine a target’s position.

Since sensors exhibit random noise, they are modeled as such in this research. Since

no measurement is perfect, it is beneficial to incorporate measurements from more

than the minimum number of sensors. This process assumes each sensor measure-

ment is unbiased and applies a least-squares error estimation to calculate the target

location [11].

Poor sensor geometry can cause large errors when performing position calcula-

tions using imperfect measurements. The ideal 2D sensor geometry is angular sepa-

ration of 90 degrees in the sensor plane. In general, optimal sensor geometry can be

described by
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θ =
360

Nsens

◦
(2.91)

where Nsens is the number of sensors.

Figure 2.7 shows how poor sensor geometry can produce large position estima-

tion errors in 2D [11]. The solid circles indicate the range measurements and the

dashed circles describe the associated measurement uncertainty. The shaded areas

indicate the size and shape of the regions likely containing the target’s true posi-

tion. Figure 7(a) shows optimal geometry with a minimized shaded “uncertainty”

region. The suboptimal case shown in Figure 7(b) provides a visual representation of

increased position uncertainty based solely on poor sensor geometry.

2.4.4 Velocity Vector Calculations using Range-Rate Measurements . Range-

rate measurements from different sensors can be used to calculate a target’s velocity

vector in a manner very similar to multilateration. Figure 2.8 is a 2D example of this

process [9]. The two range-rate sensors, S1 and S2, can provide magnitude mea-

surements of the target’s radial velocity (i.e., speed). The target’s measured velocity

vectors are shown by v1 and v2. Assuming the positions of the target and sensors are

known, these vectors can be combined to form a velocity vector estimate, v. Sensor

1

2

A

(a) Optimal Geometry

1

2

A

(b) Poor Geometry

Figure 2.7: Impact of Sensor Geometry on Precision of Position Calculation
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geometry requirements and limitations are the same as those in multilateration. A

minimum of three sensors is required in 3D to reconstruct the target velocity vec-

tor. No two sensors may be co-linear in LOS to the target and all three cannot be

co-planar with the target.

2.4.5 Measurement Gating and Data Association. For the sake of comple-

tion, a synopsis of the gating and data association process is included. The measure-

ment gating and data association process is virtually unchanged from the existing

strategy completed in previous work [11]. The sensor measurements are created using

additive, white Gaussian noise and also introducing false “clutter” measurements to

the Argos-generated missile trajectory discussed in Section 4.3.

The goal of measurement gating is to eliminate sensor observations far away from

the predicted trajectory. This research uses a two-stage gating process to efficiently

remove unlikely observations. As described by [2], square gating uses the maximum

eigenvalue of the residual covariance Sk which is scaled by a sizing factor γ and can

be expressed as

Figure 2.8: Calculation of 2D Velocity from Speed Measurements
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emax =
√

max(eig(γSk)) (2.92)

The gating is sized such that clutter measurements are effectively eliminated. Ac-

cording to [2] and [11], choosing γ = 9.2 provides a 99 percent chance that the

true observation is within the gate [2]. The residual covariance is calculated from

the apriori state covariance, P−k , and the measurement model parameters using the

formula [2]

Sk = HkP
−
kH

T
k +Rk (2.93)

After computing e max, each measurement, zj, is compared to the expected

target measurement, ẑ, using the formula [2]

ẑ − e max ≤ zj ≤ ẑ + e max (2.94)

The subscript j refers to the jth measurement from the sensor. Every measurement

outside this region is eliminated as a possible candidate for updating the target.

The first stage is relatively coarse because it uses a worst-case, one-dimensional

approximation based on the residual covariance. The second stage refines the mea-

surement observations using ellipsoidal gating. The residual norm, d2j , of each mea-

surement is compared to the gate size. If the residual norm is larger than the gate

size, γ < d2j , the measurement is eliminated from inclusion as a track update. If

multiple observations occur with residual norms within the gate size, the one with

the smallest residual norm is chosen to update the track.

Data association is a complicated topic with many theorized suboptimal and

optimal approaches. Much has been written about solving the data association prob-

lem using both hard and soft data assignments. Hard assignment algorithms typically

allow for only one possible data assignment for each measurement. Soft assignment
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algorithms are typically recursive and assign probabilities to each data assignment

hypothesis. The scope of this research is limited to a simple hard data assignment al-

gorithm known as global nearest neighbor (GNN). The closest observation is assessed

by comparing the residual norm, d2j , for each observation which survives the gating

process. The residual norm is defined as

d2
j = γTkS

−
k 1γk. (2.95)

where γk is the difference between the actual and predicted measurements.

γk = zk − ẑk. (2.96)

2.5 Summary

This chapter covered the mathematical basis required to build and implement

six Kalman smoothers (EKS, IEKS, SFRA EKS, UKS, IUKS, SFRA UKS). The UKF

provides a convenient way to gain 2nd order estimation capability. The EKF works well

when systems are nearly linear over the update interval because it relies on successive

first-order approximations of the system. The UKF works well even with nonlin-

ear systems because it does not directly linearize the state estimate. In both cases,

the benefits of coupling a dynamics model with measurement data are impressive.

These benefits are maximized in post-processing by the application of a fixed-interval

smoother. A smoother combines forward and backward KF’s to generate an optimal

state estimate. These algorithms provide trade offs between computational load and

estimation performance. After establishing the basis for these Kalman smoothers, a

basic measurement environment with gating and data association was defined. Chap-

ter III discusses previous research on this topic and provides insight for the motivation

to develop these Kalman smoothers.
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III. Past Research

3.1 Overview

Missile tracking is a rich topic which lends itself to the application of Kalman

filters and data smoothing. This literature review begins with the introduction of the

UKF by Julier and Uhlmann [4] for system state estimation. This transform presents

advantages over direct linearization of system equations and forms the basis of this

work. Teixeira et al present a method for reconstructing the flight path of a sailplane

aircraft using a UKF and UKS with the overall goal of estimating sensor biases [13].

The smoother implementation was used as a model for UKS implementation in this

thesis. Roumeliotis et al present a Kalman smoother based localization algorithm

for a mobile robot using periodic sensor updates with a loosely-coupled INS [10].

Sweeney presents a novel architecture for the generation and reconstruction of air-to-

air missile trajectories using Kalman filters [11]. His work forms the baseline effort

for this research.

3.2 A New Extension of the Kalman Filter to Nonlinear Systems

Julier and Uhlmann introduced the Unscented Kalman filter (UKF) as a new

technique for system state estimation [4]. This new version of the Kalman filter has

several key advantages over the tried-and-true Extended Kalman filter (EKF). The

UKF relies on a novel nonlinear transform called the unscented transformation. The

basic idea behind the unscented transformation is that “it is easier to approximate

a Gaussian distribution than it is to approximate an arbitrary nonlinear function or

transformation” [4]. The EKF works well when systems are nearly linear over the

update interval because it relies on successive first-order approximations of the sys-

tem. The UKF does not directly linearize the system. Instead, sample points (called

sigma points) are created to parameterize the mean and covariance values of the state

variables. These sigma points are transformed using the unscented transform to new

parameterized terms that are propagated and updated using a modified Kalman filter.

Unlike the EKF, the UKF does not require that the noise sources be Gaussian and
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also does not attempt to linearize the system. The authors argue that UKF perfor-

mance is equivalent to that of a 2nd-order Gauss filter and is easier to implement. The

authors show that the less stable EKF requires that the process noise covariance be

artificially increased to account for the linearization errors made by the filter.

The authors argue that the Jacobian matrix calculation required in the EKF

for a first-order linear approximation is difficult to implement in most systems. The

other cited drawback of the EKF is the instability caused by a poorly executed linear

approximation of the system. A pictorial of the unscented transformation is shown

in Figure 3.1.

Since the distribution of x is approximated to the second order and transformed

without linearization, the distribution of y is also known to this level of accuracy.

The UKF requires no linearization of the system. In comparison, the EKF linearizes

the system and assumes all noise sources are Gaussian. Since the UKF does not

approximate the system, many higher order effects are preserved by the estimator.

The authors show how the UKF can be made to perform just as well as a 2nd-order

Gauss filter without the need to calculate Jacobians or Hessians. Sigma points can

be generated using

X0 = x̂−k (3.1)

Figure 3.1: Principle of the Unscented Transform [4]
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Xi = x̂−k + C

√
(λ+ L)P−xk |i i = 1, 2...L (3.2)

Xi+L = x̂−k − C

√
(λ+ L)P−xk |i i = 1, 2...L (3.3)

where L refers to the number of states and the subscript i refers to the column number.

The variable λ is a scaling parameter defined as

λ = α2(L+ κ)− L (3.4)

The α term changes the spread of the sigma points and κ is a secondary tuning

parameter which is set to zero. After calculating the sigma points they are grouped

into a matrix such that each sigma point is a column of the matrix. The complete set

of sigma points is

XLx(2L+1) =
[
X0 X1 · · · X2L

]
(3.5)

Next, the sigma points are transformed through the nonlinear observation func-

tion shown mathematically by

Zk|i = h[Xk|i] ∀ i ∈ [0, 2L] (3.6)

The Kalman filter algorithm is modified to propagate and update the new sigma

points. The major difference between the UKF and EKF is the transformed sigma

points are stored and propagated in the estimator. In the EKF, only the mean and

covariance of the system state are propagated.

Julier and Uhlmann show how the UKF outperforms the EKF in the relatively

simple system described by
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x
y

 =

r cos θ

r sin θ

 ,∇f =

cos θ −r sin θ

sin θ r cos θ

 (3.7)

The basic idea is that a sonar system with good ranging accuracy (σr = 2cm) and

poor bearing accuracy (σθ = 15deg) is used to determine the 2-dimensional Cartesian

location of a target. Since the bearing information is not very accurate, the local

assumption of linearity is violated in the EKF. The only way to maintain a stable

estimate of the state is to artificially increase the process noise covariance to account

for the linearization errors made by the EKF.

Figure 3.2 shows the mean and standard deviation ellipses for the actual and

linearized form of the transformation. The true mean is at “x” and the uncertainty

ellipse is solid. Linearization calculated the mean at “o” and the uncertainty ellipse is

dashed [4]. The UKF approach is summarized with the ability to predict the system

state more accurately and with less difficulty. The paper ends with a description of a

companion document which contains the derivation of an unscented transform with

Figure 3.2: Visualization of Unscented Transform Measurement Model [4]
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more sigma points. This modified UKF is lauded to match up to 4th-order moments

of the state variables. The Unscented Trasnform forms the core of the UKF and UKS

algorithms. It provides a convenient way to acheive an accurate approximation of

system state variables.

3.3 Flight Path Reconstruction Using The Unscented Kalman Filter

Algorithm.

Teixeira, Torres, Andrade de Oliveira, and Aguirre propose the use of an Un-

scented Kalman Filter (UKF) and derivated Unscented Kalman Smoother (UKS) to

reconstruct the flight path of a sailplane aircraft during a series of flight tests [13].

The UKS is possible only when estimation if performed offline (i.e., cannot occur in

real-time). One of the important benefits of reconstructing the flight path accurately

based on all sensor data available is that individual sensor biases and sensitivity mis-

matches could be calculated. An important goal of the research is to calculate the

biases associated to each accelerometer and gyro in the sailplane’s Inertial Measur-

ment Unit (IMU).

The authors begin with a general approach to state vector recursive estimation.

Mention is made of possibly using a first-order estimator like the Extended Kalman

Filter (EKF). The reasoning for using a second-order estimator such as the UKF was

based on the author’s intuition that it should be easier to approximate a Gaussian

distribution than an arbitrary nonlinear function [4]. Instead of linearizing the model

equations, this algorithm propagates a small representative group of deterministically

chosen points (actually vectors) named sigma points: X i, i = 0, 1, ..., 2L,. The di-

mension of the augmented state vector L, which by construction includes the mean

and covariance information of the state estimate at time k− 1, with t = kTs where k

denotes discrete time and Ts is the sampling period, in order to numerically calculate

the prior state estimate x̂k|k−1 and its covariance matrix P k|k−1 by their propagation

through the discrete counterpart of the nonlinear equations [13].

43



The recursive UKF algorithm provides estimates of the state vector based on

all past measurements including the present. Since the authors had the option of

offline estimation to reconstruct the flight path of the sailplane, they employed a

UKS. Basically, the UKS optimally combines the results of a forward and a backward

UKF. The forward UKF estimates mean and covariance (x̂fk|k,P
f
k|k) given all past and

present data and the backward UKF estimates (x̂bk|k+1,P
b
k|k+1) given all future data.

The conversion from forward UKF to backward UKF dynamics model requires only

an inversion of input and output data coupled with using the reverse of the dynamics

model:

ẋ−t = −f [x−t,u−t,w−t] (3.8)

y−t = h[x−t, r−t] (3.9)

After running two UKF passes (forward and backward) through the data, the

UKS if formed by optimally combining the results of each filter. The combination of

the backward and forward filters is a smoothed mean and covariance (x̂sk,P
s
k) given

by

[P s
k]
−1 = [P f

k|k]
−1 + [P b

k|k+1]
−1 (3.10)

and

x̂sk = P s
k[[P

f
k|k]
−1x̂fk|k + [P b

k|k+1]
−1x̂bk|k+1]. (3.11)

A battery of simulations was performed in MATLAB using a high-fidelity model

of a DHC-2 Beaver aircraft model and additive white Gaussian noise corrupted mea-

surements. Two types of trajectories were examined, smooth and very rapid. The

UKS used the state space model to incorporate IMU data (Ts = 0.10s) with GPS up-

dates (TGPS = 1.0s) post-flight to better reconstruct the flight path and thus obtain
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a better estimate of IMU biases. It was noted the smooth flight trajectory is pre-

ferred. This is expected because a smooth flight trajectory should make it easier to

distinguish large errors introduced by accelerometer and gyro biases [13]. The rapid

flight path made it difficult for the algorithm to distinguish between abrupt control

inputs and IMU biases. The simulation was conducted using differing signal-to-noise

ratios (SNR) for inputs and outputs. The results for the smooth trajectory simulation

showed that the UKF was capable of converging on reasonable values for IMU biases.

These results were further refined by using a post-flight UKS. Typically, the UKS

provided at least a 50% reduction in state estimation error compared to the UKF for

each of the 9 states.

The authors implemented a UKS to reconstruct the flight path of a sailplane

and showed impressive improvements in accuracy over real-time data processing us-

ing emperical data from flight tests. These promising results partially motivated the

pursuit of a similar approach to air-to-air missile flight path reconstruction. This par-

ticular smoother implementation was used as a model for the missile scoring algorithm

presented in this work.

3.4 Air-to-Air Missile Vector Scoring Using COTS Sensors

Maj Nicholas Sweeney presents an architecture for air-to-air missile scoring us-

ing COTS radar sensors [12]. Sweeney’s work provides the basis for this thesis. The

Frequency Modulated Continuous Wave (FMCW) radar sensors are carefully located

on the QF-16 platform. Seven antennas are located on the aircraft as follows: one

directional antenna on the top and bottom of the nose section, one directional an-

tenna on the top and bottom of each wingtip and an omnidirectional antenna on the

aircraft tail. Sweeney predicts that this configuration may perform poorly for missile

trajectories that approach in-plane with a wings level aircraft but any trajectories

from above or below will likely have excellent sensor visibility.

The two software tools Profgen and Argos 3.0 are used to generate truth tra-

jectories for both the QF-16 drone and the inbound missile. Profgen, developed by
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AFRL, is used to generate the QF-16 trajectory based on defensive maneuvers to

defeat an inbound missile. The output of Profgen is used to provide target informa-

tion for use in Argos. Argos is a 6DOF (Six Degree of Freedom) air-to-air missile

simulation tool developed through collaboration between the National Air and Space

Intelligence Center (NASIC) and the Air Force Research Laboratories (AFRL). The

true missile position is not known by the Kalman filter, but it is used create noise

corrupted sensor measurements.

An extended Kalman filter (EKF) is used to predict the missile’s path based

on AWG noise corrupted range and range-rate measurements. The QF-16 drone

equipped with sensors which measure range and range-rate of an incoming air-to-air

missile [12]. It is assumed that the sensor locations on the platform are known. The

filter computed missile position improves near the intercept point using an EKF based

upon a constant velocity (CV) model of the missile dynamics. In Major Sweeney’s

thesis, a UKF and PF are also implemented [11].

Radar clutter is simulated through the inclusion of random clutter measure-

ments in the noise-corrupted measurements provided to the Kalman filter. Ellipsoidal

gating and Global Nearest Neighbor (GNN) data association are used to isolate ac-

curate measurements. These methods of gating and data association are utilized in

this thesis.

There are three engagement scenarios simulated in Sweeney’s work. These three

scenarios are used in this thesis to provide a meaningful performance baseline. Sce-

nario 1 is a non-maneuvering QF-16 drone being attacked from below. Scenario 2 is

a tail-aspect attack against the drone performing a 9G break-turn. Scenario 3 is also

tail-aspect, but the simulated drone performs a 7G vertical pull-up maneuver. The

tuning process focused on scenario 2 due to its high dynamic properties. This method

of tuning was also used in this thesis.

Sweeney recommends implementing a nonlinear filter such as the unscented

Kalman filter. The implementation of a fixed-interval smoother is also recommended
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since the current CONOPS allow for data processing post-flight. Sweeney’s recom-

mendations for future research are the motivation for the UKS developed for this

thesis. The Profgen and Argos truth generation system, measurement environment,

and gating scheme is used in this thesis. This work forms a basis for the exploration

and implementation of fixed-interval EKS, IEKS, SFRA EKS, UKS, IUKS, and SFRA

UKS analysis.
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IV. Methodology

As mentioned in Chapter I, this research introduces a post-flight missile-scoring sys-

tem which uses FMCW RF sensors carefully located on a QF-16 drone to measure

the range and range-rate of an inbound missile with the goal of estimating the mis-

sile’s trajectory. As described in Chapter II, the accuracy of position and velocity

calculations is highly dependent on sensor geometry and the associated Positional

Dilution of Precision (PDOP). The sensor locations on the QF-16 target platform are

located to minimize PDOP. The Kalman smoother-based scoring system described in

Chapter II is applicable for post-flight processing, and due to inherent limitations,

cannot be employed in real time.

Six different Kalman smoothers are employed for estimating the missile’s tra-

jectory based on kinematic measurements from the RF sensor suite: EKS, IEKS,

SFRA EKS, UKS, IUKS, and SFRA UKS. As described in Chapter II, each of these

smoothers is a combination of forward and backward filters. For each simulation, one

of three dynamics models (discussed in Section 4.2) is paired with one of three air-

to-air engagement profiles (discussed in Section 4.5). In all cases, the forward filter

is initialized with a hand-off state estimate and covariance before processing through

all available data (discussed further in Section 4.4). The backward filter is initialized

using a simulated GRDCS value before propagating backwards through time and per-

forming its own estimate of the missile’s trajectory. Using the mathematics described

in Chapter II, the results from both filters are combined to produce a smoothed result.

This chapter begins with a discussion of the RF sensors and their location on the

QF-16 drone platform in Section 4.1. The three missile dynamics models used in this

research are described in Section 4.2. The initialization process for the forward and

backward Kalman filters is explained in Section 4.4. The truth model used to assess

the performance of each smoother is described in Section 4.3. Section 4.5 describes

three basic air-to-air engagement scenarios: Non-manuevering, 9G descending break

turn, and 7G vertical pull-up. These scenarios form the basis for judging smoother

tracking performance.
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4.1 Aircraft Sensor Configuration

An existing automotive-grade FMCW sensor is simulated for use in this research.

The specifications of this sensors are [11]:

• Maximum Range: 350 meters

• 1-σ range resolution: 0.01 × range

• Range-rate resolution: 0.25 meters/second

• Transmit Pattern: Continuous, Spherical

• Measurements: Range and Range-rate only

This research assumes the QF-16 platform is the basis for the sensor suite.

It is assumed there are a total of seven sensors located on the platform to provide

uninterrupted visibility of the inbound missile [11]. The approximate specifications

of the QF-16 sensor platform are:

• Length: 16 meters

• Wingspan: 10 meters

• Number of Sensors: 7

• Sensor Locations:

– 2 directional in nose section (top/bottom)

– 2 directional left wingtip (top/bottom)

– 2 directional right wingtip (top/bottom)

– 1 omnidirectional antenna on tail.

• Optimized for inbound missile trajectories above/below aircraft.

Table 4.1 lists the location of each sensor in the QF-16 body frame with the

origin at the geometric center of the QF-16. Figure 4.1 shows the radar sensor layout

on the top and bottom of the QF-16.
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Table 4.1: Radar Sensor Locations w.r.t Center of Aircraft
Sensor Number Location x (m) y (m) z (m)

1 Nose, Top 8 0 −0.5
2 Nose, Bottom 8 0 0.5
3 Left Wing, Top 0 −5 0
4 Left Wing, Bottom 0 −5 0.1
5 Right Wing, Top 0 5 0
6 Right Wing, Bottom 0 5 0.1
7 Tail (Omni directional) −8 0 −1

4.2 System Models

As discussed previously, a KF is composed of a dynamics model and an ob-

servation model. A Kalman Smoother is the optimal combination of two KF’s, one

propagating forward in time and one propagating backward. Chapter II describes the

mathematical relationship between these components. This research compares perfor-

mance using three linear dynamics models. Recall from Equations (2.79) and (2.80)

that the dynamics model for a backward KF is the inverse of the forward KF. The

forward and backward KF’s used in the development of the six Kalman Smoothers

are based on three linear dynamics models: constant velocity (CV), constant acceler-

ation (CA), and a 3D coordinated turn (CT). Accordingly, only the forward dynamics

models will be discussed in Sections 4.2.1 through 4.2.3.

4.2.1 Constant Velocity. The CV model uses only six navigation states to

describe the position and velocity of the inbound missile. The state vector associated

with this model is [2]

x =
[
x y z vx vy vz

]T
. (4.1)

Described in continuous time, the linear CV dynamics model is [2]

ẋ(t) = Fx(t) +w(t) (4.2)
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where

F =

 03x3 I3x3

03x3 03x3

 (4.3)

G =

 03x3

I3x3

 (4.4)

and the covariance kernel of the AWG noise vector w(t) is defined by

E[w(t)w(t+ τ)] = Q =


q 0 0

0 q 0

0 0 q

 δ(τ) (4.5)

where q becomes a tuning parameter describing the uncertainty associated with the

model.

The CV model assumes constant velocity along each inertial axis while modeling

acceleration along each axis as an independent, zero-mean, Gaussian, white noise.

The entire missile track lasts less than 1 second, so frequent updates are required to

produce a high fidelity reconstruction. Accordingly, a flat Earth assumption is made

and the time steps, T , are seperated by 10msec. For this research, missile trajectory

propagation is performed in a local-level navigation frame with an origin fixed on the

surface of the Earth.

The difference equation resulting from converting to discrete time is

xk = φxk−1 +wk−1 (4.6)

The state transition matrix, φ, is
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φ =



1 0 0 T 0 0

0 1 0 0 T 0

0 0 1 0 0 T

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


. (4.7)

Using the Van Loan [3] method to solve for the noise strength matrix, Qd, produces

Qd =



T 3

3
0 0 T 2

2
0 0

0 T 3

3
0 0 T 2

2
0

0 0 T 3

3
0 0 T 2

2

T 2

2
0 0 T 0 0

0 T 2

2
0 0 T 0

0 0 T 2

2
0 0 T


q. (4.8)

where T = 10msec.

4.2.2 Constant Acceleration. Instead of modeling the acceleration compo-

nents as zero-mean, white, Gaussian variables, the CA model uses three additional

states to propagate acceleration components. The resulting state vector is [2]

x =
[
x y z vx vy vz ax ay az

]T
. (4.9)

The F and G matrices can be described as [2]

F =


03x3 I3x3 03x3

03x3 03x3 I3x3

03x3 03x3 03x3

 (4.10)
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G =

 06x3

I3x3

 . (4.11)

The dynamic noise strength matrix, Q, is in the same form as Equation (4.5).

The derivative of acceleration, known commonly as jerk, is modeled as a zero-

mean, Gaussian, white noise [2].

The state transition matrix, φ, and discrete dynamic noise strength, Qd, are

φ =



1 0 0 T 0 0 T 2

2
0 0

0 1 0 0 T 0 0 T 2

2
0

0 0 1 0 0 T 0 0 T 2

2

0 0 0 1 0 0 T 0 0

0 0 0 0 1 0 0 T 0

0 0 0 0 0 1 0 0 T

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



(4.12)

Qd =



T 5

20
0 0 T 4

8
0 0 T 3

6
0 0

0 T 5

20
0 0 T 4

8
0 T T 3

6
0

0 0 T 5

20
0 0 T 4

8
0 0 T 3

6

T 4

8
0 0 T 3

3
0 0 T 2

2
0 0

0 T 4

8
0 0 T 3

3
0 0 T 2

2
0

0 0 T 4

8
0 0 T 3

3
0 0 T 2

2

T 3

6
0 0 T 2

2
0 0 T 0 0

0 T 3

6
0 0 T 2

2
0 0 T 0

0 0 T 3

6
0 0 T 2

2
0 0 T



q (4.13)
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4.2.3 Three-dimensional Coordinated Turn. The CT model contains exactly

the same nine navigation states as the CA model. The main difference is the velocity

navigation states are propagated according to an assumed constant turn rate, ω.

ω =
|v × a|
|v|2 (4.14)

The acceleration states are propagated according to

ȧ(t) = −ω2v(t) +w(t). (4.15)

The continuous time linear dynamics matrices are [2]

F =


03x3 I3x3 03x3

03x3 03x3 I3x3

03x3 A 03x3

 (4.16)

A =


−ω2 0 0

0 −ω2 0

0 0 −ω2

 (4.17)

G =

 06x3

I3x3

 (4.18)

where v(t) is the 3D velocity vector and ω(t) is a corresponding vector of indepen-

dent, zero-mean, white Gaussian noise sources.

The CT state transition matrix is a function of ω as shown by [2]

φ(ω) =


A(ω) 03x3 03x3

03x3 A(ω) 03x3

03x3 03x3 A(ω)

 (4.19)
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where A(ω) is defined as

A(ω) =


1 sinωT

ω
1−cosωT

ω2

0 cosωT sinωT
ω

0 −ω sinωT cosωT

 . (4.20)

The closed form solution for Qd is rather complex and is not included for this reason.

4.2.4 Observation Model . The mathematical relationship between range

measurements and navigation position states is nonlinear. Accordingly, the measure-

ment model is nonlinear with independent, additive, white, Gaussian noise. The range

measurement from sensor i is related to the position states according to

ri =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 (4.21)

The coordinates of sensor i, [xi yi zi], are fixed in relation to the body frame but must

be converted to the same reference frame as the missile using DCM’s as discussed

in Chapter II. The state vector of the inbound missile is expressed in the local level

Earth-fixed navigation frame (n-frame).

Similarly, the relationship between range-rate measurements and navigation ve-

locity states is also highly nonlinear. Radar range-rate measurements from sensor i

are defined by

vi = −(vx − vxi)(x− xi) + (vy − vyi)(y − yi) + (vz − vzi)(z − zi)√
(x− xi)2 + (y − yi)2 + (z − zi)2

(4.22)

This research focuses solely on linearized 3-D missile dynamics models (con-

stant velocity, constant turn rate, and constant acceleration). As mentioned, the

observation model is distinctly nonlinear. The general form of which is

zk = h[xk] + vk (4.23)
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where zk is a vector of measurements, the matrix Hk relates the measurements to

current states and vk is a vector of zero-mean, additive, white, Gaussian measurement

noise. The measurement noise covariance kernel is defined by

E[vkv
T
j ] = Rδkj (4.24)

In the EKS-based algorithms, the observation function is linearized about the

current state vector using a Jacobian matrix which is calculated by performing a first-

order Taylor expansion of each nonlinear function with respect to the current states.

This Jacobian is evaluated at the current state estimate

Hk =
δh

δx
|x̂k|k−1

(4.25)

The UKS-based algorithms do not directly linearize the state vector and are able to

preserve some of the nonlinearities present through sigma point propagation.

4.3 Truth Model

The truth data for the QF-16 drone flight trajectory is generated using Prof-

Gen. This simulation tool converts user-specified aircraft dynamic capabilities into a

software flight model. The user can use this model to produce representative evasive

maneuvers such as break turns, jinks, rolls, etc. The QF-16 is modeled as a point-mass

body which means lift, drag, and thrust calculations are approximated. ProfGen is

sufficient for providing an approximate kinematic trajectory for the QF-16 platform

in the WGS-84 ECEF reference frame. This trajectory is converted using DCM’s in

MATLAB to a local-level Earth-centered North-East-Down (NED) navigation frame

before used as an input to Argos 3.0.

Argos 3.0 is a 6-DOF missile simulation tool developed by the National Air

and Space Intelligence Center (NASIC) in cooperation with the Air Force Research

Laboratories (AFRL). For this research, the missile model used in Argos 3.0 is an
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unclassified short-range missile operating in a flat-Earth environment. The software

operates in local-level NED navigation frame. The output of this tool is a high fidelity

missile intercept trajectory in response to the QF-16 trajectory generated by ProfGen.

Figure 4.2 shows an overview of the truth generation and flight path reconstruction

process.

Radar measurement noise and clutter are simulated in MATLAB for individual

sensors. During each measurement update, individual sensors return observations

based upon the noise-corrupted version of the true range and range-rate as well as

clutter measurements. The observations are generated by adding random noise to the

range and range-rate measurements. This noise is a zero-mean, Gaussian distribution

with variance defined by the sensor performance as described in Section 4.1. The

number of clutter observations are chosen from a uniform distribution of integers over

the interval [0,3]. The actual range values of these clutter observations are chosen from

a random variable which is uniformly distributed over the sensor’s entire detection

range.

4.4 Target Initialization

The forward Kalman filters are initialized using missile position and velocity

data from an external tracking source. Most USAF missile test ranges are equipped

with a system which monitors missile position for safety. For example, the Eglin Gulf

Test range uses the Gulf Range Drone Control System (GRDCS) [5] to provide real-

time missile positioning. This system provides position accuracy with 1 − σ values

of 15 meters in the x and y-axis (North/East) and 45 meters in the z-axis (Down).

The system updates missile position at 20 Hz and velocity is calculated based on the

change in position between time steps. The initial forward filter missile state vector

x̂f0 is set equal to the GRDCS hand-off according to

x̂f0 = x̂GRDCSfinal . (4.26)
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Random position and velocity error are added to each axis from a zero-mean

normal distribution with the following standard deviations: σfx0 = 15, σfy0 = 15,

σfz0 = 45, σfvx = 10, σfvy = 10 and σfvz = 10 meters. The initial forward state

covariance matrix, P f
0 , is established using these GRDCS parameters via

P f
0 =



σfx0
2

0 0 0 0 0

0 σfy0
2

0 0 0 0

0 0 σfz0
2

0 0 0

0 0 0 σfvx0
2

0 0

0 0 0 0 σfvy0
2

0

0 0 0 0 0 σfvz0
2


(4.27)

The backwards Kalman filter is initialized using a simulated GRDCS hand-off

taken from the end of the missile’s flight path. The initial backward state covariance

matrix, P b
0 , is established using

P b
0 =



σbx0
2

0 0 0 0 0

0 σby0
2

0 0 0 0

0 0 σbz0
2

0 0 0

0 0 0 σbvx0
2

0 0

0 0 0 0 σbvy0
2

0

0 0 0 0 0 σbvz0
2


(4.28)

4.5 Engagement Scenarios

The flight profile for Scenario 1 is shown in Figure 4.3. The target aircraft is

flying straight and level with a Northbound heading at an altitude of 5000 meters

and maintains this attitude for the duration of the scenario. The shooter’s initial

position is 1.6 kilometers in front of the target, at an altitude of 500 meters with a

70 degree pitch-up attitude. The entire scenario lasts about 8 seconds. The missile

enters within the max range of the drone’s sensors at approximately T = 7.5 seconds.
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Figure 4.3 also shows the forward and smoother estimates of the missile trajectory

performed by the UKF and UKS algorithms, respectively.

Figure 4.4 shows the flight profile for Scenario 2. The target aircraft begins

the scenario flying wings-level with a northbound heading at an altitude of 5000

meters. Immediately, the target is aware of the missile and rolls to perform a 90

degree 9G break turn. This maneuver is a common defensive tactic used against a

missile observed within visual range. It allows the targeted aircraft to change direction

quickly without bleeding off all its energy. The missile impact occurs as the target

approaches an easterly heading at 4300 meters altitude. The shooter’s initial position

is 4.8 kilometers in trail with northbound heading at an altitude of 5000 meters. The

entire simulation lasts about 8 seconds and the missile enters within the max range

of the drone’s sensors at approximately T = 7.6 seconds.

The flight profile for Scenario 3 is shown in Figure 4.5. The target begins the

scenario flying wings-level with a northbound heading at an altitude of 5000 meters.

The missile is launched at the outset of the simulation from a position two miles in

trail with the same attitude and altitude as the target aircraft. The target is aware

of the missile and immediately performs a 7G vertical pull at the beginning of the

simulation. The entire simulation lasts about 8 seconds and the missile enters within

the max range of the drone’s sensors at approximately T = 7.6 seconds.

4.6 Summary

Simulation development begins with a defensive flight trajectory for the QF-16

generated in ProfGen software developed by AFRL. Initial shooter position and atti-

tude are combined with this trajectory in Argos 3.0 to generate a missile flight path.

Simulated RF sensors, located on the QF-16, are used to generate range and range-

rate measurements which are corrupted by AWG noise and clutter measurements

in MATLAB. The forward Kalman filter is initialized based on a missile trajectory

hand-off from GRDCS. After the forward filter process the flight path, the final state

estimate and covariance of the missile trajectory are used to initialize the backward
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filter. The observation model processes these corrupted measurements and attempts

to reconstruct the missile flight path using one of three dynamics models: CV, CA,

CT. In addition to the three dynamics models, there are three basic air-to-air en-

gagement scenarios: Non-manuevering, 9G horizontal break turn, and 7G vertical

pull-up. These dynamics models and scenarios form the basis for judging flight path

reconstruction performance.
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Figure 4.1: FMCW Radar Sensor Layout on QF-16
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Figure 4.2: Overview of Truth Generation and Reconstruction
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Figure 4.3: Scenario 1: Target Aircraft Non-maneuvering
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Figure 4.4: Scenario 2: Target Aircraft Performing a 9G Horizontal Break-Turn
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Figure 4.5: Scenario 3: Target Aircraft Performing a Vertical Climb
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V. Experimental Results

5.1 Simulations

The goal of this research is to summarize the performance of six Kalman smoothers

and recommend the best algorithm for DoD/USAF use in missile vector scoring and

trajectory reconstruction. These smoothers are examined using three dynamics mod-

els, each in three different air-to-air engagement scenarios as mentioned in Chapter IV.

This equates to a minimum of 54 simulation combinations. Sensor noise and target

initialization errors are generated for each engagement scenario and saved with the

requirement that each of the six smoothers uses the same noise realizations.

All simulations are based on 100-run Monte Carlo analyses for which position

and velocity mean error and standard deviation are plotted for each state. The

Monte Carlo Mean 3-D RSS position error ± 1σ is plotted to show expected position

error throughout the missile fly-out. Since nearly all the forward-only filters and

smoothers were able to provide centimeter-level accuracy at the point of impact, the

main performance metric used is the expected value of the Monte Carlo Mean 3-D

RSS position error. The reasoning for using this metric is discussed in Section 5.2.

Section 5.3 explains the systematic manner with which filter tuning for all smoothers

was established. A synopsis of the performance results from the six smoothers is

available in Section 5.4. Appendix A provides a comprehensive catalog of simulation

results for every smoother/scenario/dynamics model combination. As one will see,

the results between the SFRA UKS and standard UKS are incredibly close. In order

to differentiate between the two, three advanced stability tests are created. Discussed

further in Section 5.5, these tests simulate random sensor dropout and artificially

increase sensor noise to analyze filter stability. This section concludes with an analysis

of these stability tests and establishes which algorithm performs the best in this

research.
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5.2 Performance Metric Selection

The goal of selecting a performance metric is to capture many components

of several complicated processes in an easily-digestible value. Stochastic processes

are often analyzed using Monte Carlo simulations to capture stochastic performance

when ergodicity is not guaranteed. Given these two constraints, a logical first choice

is Monte Carlo mean position error at point of impact. The point of impact cal-

culations were calculated and observed to not exceed 20 cm for any given Kalman

Smoother/Dynamics Model/Flight Scenario combination.

Miss distance alone does not adequately evaluate the performance of an air-

to-air missile. The main purpose of missile flight path reconstruction is to capture

true missile performance. This includes the missile’s flight vector, turn rate, closing

velocity, and miss distance. It is difficult to convey these attributes in a single metric.

It was apparent that the metric selected should be able to convey the accuracy

of the entire missile trajectory estimate. In doing so, the new metric should be able to

partially capture the convergence time and overall stability of the algorithm. Thus,

the decision was made to use the expected value of Monte Carlo 3D Mean Root of

Sum of Squares (RSS) Position Error. This metric describes the expected value of

3D position error for Monte Carlo simulations over the entire missile trajectory. The

method for calculating this metric is shown below.

For each time step k of each simulation run, position error for each NED axis

is calculated according to

Nerrk = x̂Nk|k − xNtk (5.1)

Eerrk = x̂Ek|k − xEtk (5.2)

Derrk = x̂Dk|k − xDtk (5.3)

where x̂k|k is the aposteriori state estimate and xtk is the true missile position at time

step k . At this point, the 3D RSS position error is calculated for each time step

according to
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RSSk =
√
N2
errk

+ E2
errk

+D2
errk

. (5.4)

After obtaining RSSk for each time step of a single run, a 100-run Monte Carlo

simulation is performed. The arithmetic mean of the 3D RSS position error is calcu-

lated for each time step k across 100 runs. The Monte Carlo standard deviation is

also calculated. The results are

E[RSSk] =
1

100

100∑
i=1

RSSk. (5.5)

σRSSk
=

√√√√ 100∑
i=1

(RSSk − E[RSSk])
2

100
. (5.6)

For example, Figure 5.1 shows E[RSSk] ± σRSSk
for the forward, backward,

and smoother outputs. This is a sample output using the UKS algorithm with the

CT dynamics model and 7G Vertical trajectory.

The performance metric, (expected value of Monte Carlo Mean 3D RSS position

error) is then calculated (i.e., calculating the arithmetic mean of E[RSSk] for all time

steps k = 1, 2...kfinal)

PM =
1

kfinal

kfinal∑
k=1

E[RSSk]. (5.7)

Using the example provided in Figure 5.1, PMUKF is 4.549 meters and PMUKS

is 2.119 meters. Results for all algorithms are available in Tables 5.2- 5.4.

5.3 Filter Tuning

To maintain consistency and applicability of results, filter tuning was not changed

significantly from the baseline established in previous research. Since the backward-

propagation filters are derived from the forward filter dynamics models and use the
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Figure 5.1: Monte Carlo Mean 3D RSS Position Error (100 Runs)

same measurement models, backward filter tuning was also unchanged. Tuning for

both the EKF and UKF was established using the CA dynamics model with the 9G

break turn (Scenario 2). The CA model was chosen for because it provides dynamics

fidelity between that of the CV and CT models. The 9G break turn scenario was

chosen because of the high level of missile dynamics. The purpose of using systematic

tuning is to provide a comparable baseline for all smoothers and to aide in assessing

stability. Only two parameters were varied while tuning for Scenario 2: dynamic noise

strength, Q, and the magnitude values of the measurement noise strength matrix, R.

The Monte Carlo mean position and velocity errors ± 1σ were plotted for each

combination to observe KF stability. Figure 5.2 shows an example for the UKS using

the CA dynamics model in the 9G break turn scenario. The mean error and associated

standard deviation is plotted for the position and velocity states (x, y, z, vx, vy, vz).

The turn rate ω and acceleration states could also be used for tuning if applicable

to the dynamics model. A properly tuned filter will produce mean error values of
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nearly 0 and should be bounded within ± 1σ at least 68.29% of the time. The UKS

in Figure 5.2 appears to be performing well and is stable.

Multiple trials were performed using varying dynamics and measurement noise

values. Both the EKS and UKS tuning parameters were obtained based on systematic

analyses of the performance metric established in Equation (5.7). The values obtained

using this tuning process for the CV dynamics model in scenario 2 are q = 1, 000,

Rrange = 10, and Rvelocity = 20. A sample discretized Qd generated using the Van

Loan method is

Qd =



0.0003 0 0 0.0500 0 0

0 0.0003 0 0 0.0500 0

0 0 0.0003 0 0 0.0500

0.0500 0 0 0.1 0 0

0 0.0500 0 0 0.1 0

0 0 0.0500 0 0 0.1


. (5.8)

After establishing the tuning baseline for the CV model in scenario 2, values

were obtained using the same method for the CA and CT dynamics models. For these

models, the measurement noise remained the same and only the dynamics noise q was

changed. Table 5.1 lists the tuning values used for each dynamics model.

Table 5.1: Kalman Smoother Tuning Parameters
Filter-Dynamics Model q rrange rvelocity

CV 1,000 10 2
CA 800,000 10 2
CT 800,000 10 2

5.3.1 Tuning for Iterative Filters . Recall from Chapter II, there are user-

defined thresholds which must be established for each iterative filter. In these cases,

a systematic method of tuning was used to establish a balance between filter pro-

cessing time and performance. The user-defined threshold value for the IEKF from
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Equation (2.34) was established by continually reducing the iterative threshold CI

until the performance metric from Equation (5.7) converged to a stable value within

10cm. For this thesis, the threshold for both the forward and backwards IEKF is CI

= 0.1. Recall that iterations continue until the difference between the estimates is

smaller than CI or a maximum number of iterations has been reached. A maximum

iteration count of 250 was selected based on monitoring the total number of iterations

performed at each time step and selecting a number sufficiently large to make the

possibility of converging to a value within 10cm likely.

The unstable IUKF from Section 2.2.6 also requires an iterative user-defined

threshold. The values for both the forward and backwards IUKF is 0.1, obtained by

observing when the position error metric converges to within 10cm. The iterations

continue until the difference between the estimates is smaller than the threshold or

a maximum number of iterations has been reached. A maximum iteration count of

1000 was selected based on monitoring the total number of iterations performed at

each time step and selecting a number sufficiently large to increase the probability of

convergence. At this point in IUKS development, it was discovered that the IUKS

will not necessarily converge on a better estimate as iterations increase. New sigma

points are generated and transformed through h[·] at each iteration. This process

does not necessarily converge no matter the choice of CI .

5.3.2 Tuning for SFRA Filters . Recall from Sections 2.2.3 and 2.2.7 the

SFRA EKF and SFRA UKF require user-defined thresholds for comparison with

measurement residuals. A threshold value of CR = 15 was chosen for this research

also based on position error metric convergence analysis to 10cm. If the mean of the

residuals exceeds this threshold, the filter returns to Equation (2.47) and generates

new sigma points. These sigma points are sent directly to Equation (2.69) to be

converted into measurement space. From this point, measurements are re-gated based

on the new measurement prediction and new residuals are formed. If the mean of the

new residuals still exceeds the threshold, the filter iterates again. Iteration ceases
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if the mean of the residuals is below the threshold or if the maximum number of

iterations is reached.
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Figure 5.2: UKS Mean Monte Carlo Position and Velocity Errors for CA dynamics
model (Scenario 2) Blue: Forward KF, Green: Backward KF, Red: Smoother
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5.4 Performance Results

Before interpreting the results from Tables 5.2-5.4, it is important to remember

that this research uses both linearized and nonlinear fixed-interval smoothers to ap-

proximate non-linear effects. Although the three dynamics models are all linear, the

measurement model has 2nd order nonlinearities. Therefore it is expected that the

nonlinear smoothers should outperform their linearized counterparts. This research

presents a myriad of Kalman Filters, smoothers, dynamics models, and engagement

scenarios to provide a comprehensive analysis. The goal of this research is to compare

various Kalman smoothers against known baselines and determine which algorithm

is best-suited for missile vector scoring and trajectory reconstruction.

The results for all Kalman algorithms, organized by engagement and scenario

dynamics model are listed in Tables 5.2- 5.4.

Table 5.2: Scenario 1: Non-Maneuvering, Arithmetic
Mean of Monte Carlo Mean 3D RSS Position Error

Algorithm Scenario 1, CV Scenario 1, CA Scenario 1, CT
UKS 3.104 m 3.343 m 3.344 m
UKF 4.835 m 4.999 m 4.999 m

SFRA UKS 2.921 m 3.844 m 4.558 m
SFRA UKF 4.657 m 4.812 m 4.812 m

IUKS 6.991 m 3.605 m 3.605 m
IUKF 8.397 m 5.879 m 5.879 m
EKS 2.918 m 3.819 m 3.819 m
EKF 5.118 m 5.958 m 5.958 m

SFRA EKS 3.015 m 3.892 m 3.891 m
SFRA EKF 5.346 m 6.159 m 6.159 m

IEKS 2.865 m 3.670 m 3.670 m
IEKF 5.106 m 5.823 m 5.822 m
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Table 5.3: Scenario 2: 9G Descending Break Turn,
Arithmetic Mean of Monte Carlo Mean 3D RSS Position
Error

Algorithm Scenario 2, CV Scenario 2, CA Scenario 2, CT
UKS 2.855 m 2.477 m 2.477 m
UKF 4.573 m 4.584 m 4.584 m

SFRA UKS 2.278 m 2.953 m 2.743 m
SFRA UKF 4.617 m 4.673 m 4.673 m

IUKS 5.160 m 4.923 m 5.305 m
IUKF 6.482 m 6.011 m 6.744 m
EKS 4.008 m 7.199 m 7.096 m
EKF 8.844 m 12.207 m 12.204 m

SFRA EKS 3.057 m 5.271 m 5.261 m
SFRA EKF 7.622 m 10.956 m 10.953 m

IEKS 3.884 m 6.904 m 6.875 m
IEKF 8.539 m 11.472 m 11.470 m

Table 5.4: Scenario 3: 7G Vertical Maneuver, Arith-
metic Mean of Monte Carlo Mean 3D RSS Position Error

Algorithm Scenario 3, CV Scenario 3, CA Scenario 3, CT
UKS 2.978 m 2.961 m 2.961 m
UKF 4.644 m 4.715 m 4.715 m

SFRA UKS 2.989 m 3.464 m 4.330 m
SFRA UKF 4.452 m 4.471 m 4.471 m

IUKS 2.875 m 7.941 m 5.642 m
IUKF 6.125 m 8.934 m 7.448 m
EKS 4.017 m 6.331 m 6.329 m
EKF 7.188 m 9.791 m 9.789 m

SFRA EKS 3.312 m 5.028 m 5.027 m
SFRA EKF 5.996 m 8.068 m 8.067 m

IEKS 3.992 m 7.106 m 7.070 m
IEKF 7.206 m 10.299 m 10.294 m
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Perhaps more easily digestible, Figure 5.3 sums all the position error perfor-

mance metrics for each algorithm. From this perspective it is easy to see that the

implementation of a fixed-interval smoother increases accuracy appreciably. In fact,

it decreases expected overall position error by an average of 43.1%.
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Figure 5.3: Accumulated Performance Metrics for All Algorithms

Figure 5.4 shows another view by eliminating the results from the forward-only

KF’s. The three nonlinear smoothers are presented with their linearized counterparts.

When examining the linearized smoothers, the SFRA EKS provides a small 4.7%

overall reduction in position error over the EKS. If we examine the results from the

non-maneuvering engagment (scenario 1), the EKS is on par with SFRA EKS. As

one might expect, the maneuver detection provided by the SFRA EKS enabled higher

accuracy estimates during the highly dynamic scenarios (2-3). The IEKS provides a

small 2.3% position error reduction when compared to the standard EKS algorithm.
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This is expected because the relinearization of h[.] should reduce some of the error

associated with linear approximation, but the implementation of a smoother should

provide most of the gains. This shows there is small performance margin to gain in

both re-linearization of h[.] and in maneuver detection.
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Figure 5.4: Performance Metrics for Kalman Smoothers

The IUKS results are included only for the sake of completeness. It has been

established that the IUKS algorithm will not necessarily converge to a stable estimate.

The performance reduction can be attributed to the fact that 2nd order nonlineari-

ties of the measurement function h[·] should be adequately captured by the standard

UKS. The iterative transformation of sigma points in the IUKS nets no increase in

performance. When examining the nonlinear Kalman smoothers versus their lin-

earized counterparts, this research indicates a 30.9% reduction in expected position
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Figure 5.5: Performance Metrics for UKS and SFRA UKS

error (excluding the non-optimal IUKS). The results of this work indicate that the

UKS or SFRA UKS should be used.

From Figure 5.5, it is still difficult to ascertain the differences between the

UKS and SFRA UKS. The SFRA UKS performs on par with the UKS with the

exception of the non-maneuvering scenario. The UKS provides an 11.5% reduction

in overall position error. The only minor performance difference improvement for the

SFRA UKS seems to lie within the two highly-dynamic engagement scenarios. The

basic maneuver detection of the SFRA UKS may provide an incremental performance

benefit. Since the results of this comparison are close, it is imperative to analyze these

two smoothers from another perspective. The next section compares the UKS versus

the SFRA UKS in a series of advanced stability tests to determine an overall winner.
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5.5 Performance Tests

Since the UKS and SFRA UKS perform nearly identically across the battery of

dynamics models and engagement scenarios, a new series of tests needs to be devel-

oped. The first series of tests simulates random sensor dropout. This test should help

pinpoint any weaknesses in algorithm stability. Sensor noise and all other parameters

are unchanged from the original configuration. For time step tk, a random number

of sensors is available. The PDF of this random sensor dropout is a uniform distri-

bution. A 100-run Monte Carlo simulation is performed across all dynamics models

and engagement scenarios. Figures 5.6 and 5.7 show E[RSSk] for both 100 runs and

for 1 run. The realization of sensor availability for the single run is also included.

Interestingly, the UKS and SFRA UKS perform on par with each other, with

a slight 4.1% performance margin in favor of the SFRA UKS. The overall expected

position error for each smoother has effectively doubled from the original case with

all available sensors. Sensor dropout causes an increase the time it takes to converge

on the missile trajectory, but does not seem to affect overall stability. Since this test

is inconclusive, more tests must be conducted.

The weakness of the SFRA UKS lies in its inability to perform well when real

world dynamics and sensor performance do not match the model. This is because the

SFRA algorithm monitors residuals and moves the state estimate towards the mea-

surement until the residual threshold is achieved. The second test involves increasing

the position sensor noise by a factor of 10 from 0.01 to 0.10 x range. No tuning was

performed to either smoother before running through the familiar gamut of dynamics

models and scenarios. The results of this test are shown in Figure 5.9.

The UKS shows an overall 10.6% decrease in expected position error. The basic

maneuver detection in the SFRA UKS relies on residual monitoring and is more likely

to mistake bad measurements for abrupt changes in trajectory. This results in less

accuracy, especially when the dynamics and observation models are mismatched. For

the sake of completeness, the results for the same test with R properly compensated
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Figure 5.6: UKS Mean Root-Sum-Squared Error (100 Runs, 1 Run) in Missile
Position Estimate and Sensor Availability with CA Dynamics Model (Scenario 3)

are shown in Figure 5.10. When the filters are properly tuned, the SFRA UKS and

UKS perform on par once again. From these results, the UKS is recommended for

use with post-flight live-fire missile test data for trajectory reconstruction and missile

scoring.
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Figure 5.7: SFRA UKS Mean Root-Sum-Squared Error (100 Runs, 1 Run) in
Missile Position Estimate and Sensor Availability with CA Dynamics Model (Scenario
3)
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Figure 5.9: Accumulated Performance Metrics for UKS and SFRA UKS with 10%
Noise - Untuned
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VI. Conclusions and Recommendations

6.1 Summary of Results

This research uses both linearized and nonlinear fixed-interval smoothers to ap-

proximate non-linear effects. Although the three dynamics models are all linear, the

measurement model has 2nd order nonlinearities. Therefore it is expected that the

nonlinear smoothers should outperform their linearized counterparts. This research

has presented a myriad of Kalman filters, smoothers, dynamics models, and engage-

ment scenarios to provide a comprehensive analysis.

The results of the UKS, SFRA UKS, EKS, SFRA EKS, and IEKS are shown in

Figure 6.1. When examining the linear smoothers, the SFRA EKS provides a small

4.7% overall reduction in position error over the EKS. If we examine the results from

the non-maneuvering engagment (scenario 1), the EKS is on par with SFRA EKS. As

one might expect, the maneuver detection provided by the SFRA EKS enabled higher

accuracy estimates during the highly dynamic scenarios (2-3). The IEKS provides an

overall 9.5% position error reduction when compared to the standard EKS algorithm.

When examining the nonlinear Kalman smoothers versus their linear counterparts,

this research indicates a 56.9% reduction in expected position error (excluding the

non-optimal IUKS).

A series of performance tests were conducted using UKS and SFRA UKS to in-

vestigate ability to handle mismatches between actual and simulated dynamics/sensor

models. After increasing the sensor noise by a factor of 10, the UKS shows an overall

15.6% decrease in expected position error. The basic maneuver detection in the SFRA

UKS relies on residual monitoring and is more likely to mistake bad measurements

for abrupt changes in trajectory. This results in less accuracy, especially when the

smoother is not tuned properly. Due to its versatility and superb stability, the Un-

scented Kalman Smoother (UKS) is recommended as the DoD/USAF standard for

post-processing and scoring live-fire missile data.
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6.2 Future Work

Future pursuits in the realm of missile vector scoring and trajectory reconstruc-

tion could include the development and simulation of a fixed-interval particle-based

smoother. Considerations to keep in mind would be creative particle regeneration

and the use of more advanced system models. It is hoped that the UKS algorithm is

used with real-world missile test data and validated against the current USAF/DoD

performance standard. There is much to be gleaned from Kalman smoother-based

post-flight missile trajectory reconstruction.
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Figure 6.1: Accumulated Performance Metrics for Kalman Smoothers excluding
IUKS
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Appendix A. Simulation Results

A.1 Introduction

Appendix A contains the results of all 126 simulations performed for this re-

search. The a plot (top left) shows 3D aircraft and missile trajectories. The b plot

(top right) shows the 100-run monte carlo mean RSS position error. The c and d plots

show 100-run monte carlo mean error and error standard deviation for missile position

and velocity states, respectively. Sections A.2, A.3, and A.4 contain the UKS, SFRA

UKS, and IUKS results. Sections A.5, A.6, and A.7 contain the EKS, SFRA EKS,

and IEKS results. Sections A.8, and A.9, contain the UKS and SFRA UKS results

with tuning for increased 10% sensor noise. Sections A.10, and A.11, contain the UKS

and SFRA UKS results for increased 10% sensor noise without tuning. Sections A.12,

and A.13, contain the UKS and SFRA UKS results with random sensor dropout.

A.2 Unscented Kalman Smoother Simulations
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Figure A.1: Unscented Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Continuous Velocity Dynamics Model (Scenario 1)

86



−200
0

200
400

600
800

1000

−2000

−1000

0

1000

2000
3500

4000

4500

5000

 

East(+)/West(−) (m)North(+)/South(−) (m)
 

A
lti

tu
de

 (
m

)

Aircraft Start Position
Aircraft Trajectory
Missile Start Position
Missile True Trajectory
Forward Filter
Smoothed Filter

(a) 3D Aircraft and Missile Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

30

time (s)

3−
D

 R
S

S
 p

os
iti

on
 e

rr
or

 (
m

)
 

 
UKF−Fwd
UKF−Bwd
UKS

(b) Mean Root-Sum-Squared Error in Missile
Position Estimate (100 Runs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−20

−10

0

10

20

x 
er

ro
r 

(m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−20

−10

0

10

20

y 
er

ro
r 

(m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−20

−10

0

10

20

z 
er

ro
r 

(m
)

time (s)

(c) Mean Error and Error Standard Deviation
of Missile Position States (100 Runs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−20

0

20

vx
 e

rr
or

 (
m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−20

0

20

vy
 e

rr
or

 (
m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−20

0

20

vz
 e

rr
or

 (
m

/s
)

time (s)

(d) Mean Error and Error Standard Deviation
of Missile Velocity States (100 Runs)

Figure A.2: Unscented Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Continuous Velocity Dynamics Model (Scenario 2)
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Figure A.3: Unscented Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Continuous Velocity Dynamics Model (Scenario 3)
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Figure A.4: Unscented Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Constant Acceleration Dynamics Model (Scenario 1)
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Figure A.5: Unscented Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Constant Acceleration Dynamics Model (Scenario 2)
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Figure A.6: Unscented Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Constant Acceleration Dynamics Model (Scenario 3)
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Figure A.7: Unscented Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Coordinated Turn Dynamics Model (Scenario 1)
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Figure A.8: Unscented Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Coordinated Turn Dynamics Model (Scenario 2)
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Figure A.9: Unscented Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Coordinated Turn Dynamics Model (Scenario 3)
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A.3 SFRA Unscented Kalman Smoother Simulations

−1500
−1000

−500
0

500
1000

1500

0

500

1000

1500

2000

2500

3000
0

1000

2000

3000

4000

5000

 

East(+)/West(−) (m)North(+)/South(−) (m)
 

A
lti

tu
de

 (
m

) Aircraft Start Position
Aircraft Trajectory
Missile Start Position
Missile True Trajectory
Forward Filter
Smoothed Filter

(a) 3D Aircraft and Missile Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

5

10

15

20

25

30

time (s)

3−
D

 R
S

S
 p

os
iti

on
 e

rr
or

 (
m

)

 

 
SFRA UKF−Fwd
SFRA UKF−Bwd
SFRA UKS

(b) Mean Root-Sum-Squared Error in Missile
Position Estimate (100 Runs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

−10

0

10

20

x 
er

ro
r 

(m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

−10

0

10

20

y 
er

ro
r 

(m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

−10

0

10

20

z 
er

ro
r 

(m
)

time (s)

(c) Mean Error and Error Standard Deviation
of Missile Position States (100 Runs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−20

0

20

vx
 e

rr
or

 (
m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−20

0

20

vy
 e

rr
or

 (
m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−20

0

20

vz
 e

rr
or

 (
m

/s
)

time (s)

(d) Mean Error and Error Standard Deviation
of Missile Velocity States (100 Runs)

Figure A.10: SFRA Unscented Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Continuous Velocity Dynamics Model (Scenario 1)
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Figure A.11: SFRA Unscented Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Continuous Velocity Dynamics Model (Scenario 2)
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Figure A.12: SFRA Unscented Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Continuous Velocity Dynamics Model (Scenario 3)
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Figure A.13: SFRA Unscented Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Constant Acceleration Dynamics Model (Scenario 1)
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Figure A.14: SFRA Unscented Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Constant Acceleration Dynamics Model (Scenario 2)
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Figure A.15: SFRA Unscented Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Constant Acceleration Dynamics Model (Scenario 3)
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Figure A.16: SFRA Unscented Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Coordinated Turn Dynamics Model (Scenario 1)
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Figure A.17: SFRA Unscented Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Coordinated Turn Dynamics Model (Scenario 2)
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Figure A.18: SFRA Unscented Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Coordinated Turn Dynamics Model (Scenario 3)
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A.4 Iterated Unscented Kalman Smoother Simulations
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Figure A.19: Iterated Unscented Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Continuous Velocity Dynamics Model (Scenario 1)
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Figure A.20: Iterated Unscented Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Continuous Velocity Dynamics Model (Scenario 2)
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Figure A.21: Iterated Unscented Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Continuous Velocity Dynamics Model (Scenario 3)

106



−1500
−1000

−500
0

500
1000

1500

0

500

1000

1500

2000

2500

3000
0

1000

2000

3000

4000

5000

 

East(+)/West(−) (m)North(+)/South(−) (m)
 

A
lti

tu
de

 (
m

) Aircraft Start Position
Aircraft Trajectory
Missile Start Position
Missile True Trajectory
Forward Filter
Smoothed Filter

(a) 3D Aircraft and Missile Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

15

20

25

30

time (s)

3−
D

 R
S

S
 p

os
iti

on
 e

rr
or

 (
m

)
 

 
IUKF−Fwd
IUKF−Bwd
IUKS

(b) Mean Root-Sum-Squared Error in Missile
Position Estimate (100 Runs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

−10

0

10

20

x 
er

ro
r 

(m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

−10

0

10

20

y 
er

ro
r 

(m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

−10

0

10

20

z 
er

ro
r 

(m
)

time (s)

(c) Mean Error and Error Standard Deviation
of Missile Position States (100 Runs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−20

0

20

vx
 e

rr
or

 (
m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−20

0

20

vy
 e

rr
or

 (
m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−20

0

20

vz
 e

rr
or

 (
m

/s
)

time (s)

(d) Mean Error and Error Standard Deviation
of Missile Velocity States (100 Runs)

Figure A.22: Iterated Unscented Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Constant Acceleration Dynamics Model (Scenario 1)
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Figure A.23: Iterated Unscented Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Constant Acceleration Dynamics Model (Scenario 2)
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Figure A.24: Iterated Unscented Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Constant Acceleration Dynamics Model (Scenario 3)
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Figure A.25: Iterated Unscented Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Coordinated Turn Dynamics Model (Scenario 1)
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Figure A.26: Iterated Unscented Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Coordinated Turn Dynamics Model (Scenario 2)
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Figure A.27: Iterated Unscented Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Coordinated Turn Dynamics Model (Scenario 3)
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A.5 Extended Kalman Smoother Simulations
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Figure A.28: Extended Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Continuous Velocity Dynamics Model (Scenario 1)

113



−200
0

200
400

600
800

1000

−2000

−1000

0

1000

2000
3500

4000

4500

5000

 

East(+)/West(−) (m)North(+)/South(−) (m)
 

A
lti

tu
de

 (
m

)

Aircraft Start Position
Aircraft Trajectory
Missile Start Position
Missile True Trajectory
Forward Filter
Smoothed Filter

(a) 3D Aircraft and Missile Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

30

time (s)

3−
D

 R
S

S
 p

os
iti

on
 e

rr
or

 (
m

)
 

 
EKF−Fwd
EKF−Bwd
EKS

(b) Mean Root-Sum-Squared Error in Missile
Position Estimate (100 Runs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−20

−10

0

10

20

x 
er

ro
r 

(m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−20

−10

0

10

20

y 
er

ro
r 

(m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−20

−10

0

10

20

z 
er

ro
r 

(m
)

time (s)

(c) Mean Error and Error Standard Deviation
of Missile Position States (100 Runs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−20

0

20

vx
 e

rr
or

 (
m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−20

0

20

vy
 e

rr
or

 (
m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−20

0

20

vz
 e

rr
or

 (
m

/s
)

time (s)

(d) Mean Error and Error Standard Deviation
of Missile Velocity States (100 Runs)

Figure A.29: Extended Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Continuous Velocity Dynamics Model (Scenario 2)
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Figure A.30: Extended Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Continuous Velocity Dynamics Model (Scenario 3)
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Figure A.31: Extended Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Constant Acceleration Dynamics Model (Scenario 1)
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Figure A.32: Extended Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Constant Acceleration Dynamics Model (Scenario 2)
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Figure A.33: Extended Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Constant Acceleration Dynamics Model (Scenario 3)
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Figure A.34: Extended Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Coordinated Turn Dynamics Model (Scenario 1)
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Figure A.35: Extended Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Coordinated Turn Dynamics Model (Scenario 2)
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Figure A.36: Extended Kalman Smoother Performance in Air-to-Air Missile Scoring
Application with Coordinated Turn Dynamics Model (Scenario 3)
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Figure A.37: SFRA Extended Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Continuous Velocity Dynamics Model (Scenario 1)
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Figure A.38: SFRA Extended Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Continuous Velocity Dynamics Model (Scenario 2)
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Figure A.39: SFRA Extended Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Continuous Velocity Dynamics Model (Scenario 3)
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Figure A.40: SFRA Extended Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Constant Acceleration Dynamics Model (Scenario 1)
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Figure A.41: SFRA Extended Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Constant Acceleration Dynamics Model (Scenario 2)
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Figure A.42: SFRA Extended Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Constant Acceleration Dynamics Model (Scenario 3)
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Figure A.43: SFRA Extended Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Coordinated Turn Dynamics Model (Scenario 1)
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Figure A.44: SFRA Extended Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Coordinated Turn Dynamics Model (Scenario 2)
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Figure A.45: SFRA Extended Kalman Smoother Performance in Air-to-Air Missile
Scoring Application with Coordinated Turn Dynamics Model (Scenario 3)
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A.7 Iterated Extended Kalman Smoother Simulations
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Figure A.46: Iterated Extended Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Continuous Velocity Dynamics Model (Scenario 1)
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Figure A.47: Iterated Extended Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Continuous Velocity Dynamics Model (Scenario 2)
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Figure A.48: Iterated Extended Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Continuous Velocity Dynamics Model (Scenario 3)
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Figure A.49: Iterated Extended Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Constant Acceleration Dynamics Model (Scenario 1)
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Figure A.50: Iterated Extended Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Constant Acceleration Dynamics Model (Scenario 2)
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Figure A.51: Iterated Extended Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Constant Acceleration Dynamics Model (Scenario 3)
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Figure A.52: Iterated Extended Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Coordinated Turn Dynamics Model (Scenario 1)
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Figure A.53: Iterated Extended Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Coordinated Turn Dynamics Model (Scenario 2)
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Figure A.54: Iterated Extended Kalman Smoother Performance in Air-to-Air Mis-
sile Scoring Application with Coordinated Turn Dynamics Model (Scenario 3)
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A.8 Unscented Kalman Smoother Simulations with 10% Sensor Noise

and Tuning
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Figure A.55: Unscented Kalman Smoother 10% Sensor Noise Tuned Performance
in Air-to-Air Missile Scoring Application with Continuous Velocity Dynamics Model
(Scenario 1)
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Figure A.56: Unscented Kalman Smoother 10% Sensor Noise Tuned Performance
in Air-to-Air Missile Scoring Application with Continuous Velocity Dynamics Model
(Scenario 2)
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Figure A.57: Unscented Kalman Smoother 10% Sensor Noise Tuned Performance
in Air-to-Air Missile Scoring Application with Continuous Velocity Dynamics Model
(Scenario 3)

142



−1500
−1000

−500
0

500
1000

1500

0

500

1000

1500

2000

2500

3000
0

1000

2000

3000

4000

5000

 

East(+)/West(−) (m)North(+)/South(−) (m)
 

A
lti

tu
de

 (
m

) Aircraft Start Position
Aircraft Trajectory
Missile Start Position
Missile True Trajectory
Forward Filter
Smoothed Filter

(a) 3D Aircraft and Missile Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

5

10

15

20

25

30

35

40

45

50

time (s)
3−

D
 R

S
S

 p
os

iti
on

 e
rr

or
 (

m
)

 

 
UKF−Fwd
UKF−Bwd
UKS

(b) Mean Root-Sum-Squared Error in Missile
Position Estimate (100 Runs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

−10

0

10

20

x 
er

ro
r 

(m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

−10

0

10

20

y 
er

ro
r 

(m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

−10

0

10

20

z 
er

ro
r 

(m
)

time (s)

(c) Mean Error and Error Standard Deviation
of Missile Position States (100 Runs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−40

−20

0

20

40

vx
 e

rr
or

 (
m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−40

−20

0

20

40

vy
 e

rr
or

 (
m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−40

−20

0

20

40

vz
 e

rr
or

 (
m

/s
)

time (s)

(d) Mean Error and Error Standard Deviation
of Missile Velocity States (100 Runs)

Figure A.58: Unscented Kalman Smoother 10% Sensor Noise Tuned Performance in
Air-to-Air Missile Scoring Application with Constant Acceleration Dynamics Model
(Scenario 1)
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Figure A.59: Unscented Kalman Smoother 10% Sensor Noise Tuned Performance in
Air-to-Air Missile Scoring Application with Constant Acceleration Dynamics Model
(Scenario 2)
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Figure A.60: Unscented Kalman Smoother 10% Sensor Noise Tuned Performance in
Air-to-Air Missile Scoring Application with Constant Acceleration Dynamics Model
(Scenario 3)
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Figure A.61: Unscented Kalman Smoother 10% Sensor Noise Tuned Performance
in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics Model
(Scenario 1)
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Figure A.62: Unscented Kalman Smoother 10% Sensor Noise Tuned Performance
in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics Model
(Scenario 2)
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Figure A.63: Unscented Kalman Smoother 10% Sensor Noise Tuned Performance
in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics Model
(Scenario 3)
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Figure A.64: SFRA Unscented Kalman Smoother 10% Sensor Noise Tuned Perfor-
mance in Air-to-Air Missile Scoring Application with Continuous Velocity Dynamics
Model (Scenario 1)
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Figure A.65: SFRA Unscented Kalman Smoother 10% Sensor Noise Tuned Perfor-
mance in Air-to-Air Missile Scoring Application with Continuous Velocity Dynamics
Model (Scenario 2)
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Figure A.66: SFRA Unscented Kalman Smoother 10% Sensor Noise Tuned Perfor-
mance in Air-to-Air Missile Scoring Application with Continuous Velocity Dynamics
Model (Scenario 3)
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Figure A.67: SFRA Unscented Kalman Smoother 10% Sensor Noise Tuned Perfor-
mance in Air-to-Air Missile Scoring Application with Constant Acceleration Dynamics
Model (Scenario 1)
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Figure A.68: SFRA Unscented Kalman Smoother 10% Sensor Noise Tuned Perfor-
mance in Air-to-Air Missile Scoring Application with Constant Acceleration Dynamics
Model (Scenario 2)
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Figure A.69: SFRA Unscented Kalman Smoother 10% Sensor Noise Tuned Perfor-
mance in Air-to-Air Missile Scoring Application with Constant Acceleration Dynamics
Model (Scenario 3)
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Figure A.70: SFRA Unscented Kalman Smoother 10% Sensor Noise Tuned Per-
formance in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics
Model (Scenario 1)
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Figure A.71: SFRA Unscented Kalman Smoother 10% Sensor Noise Tuned Per-
formance in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics
Model (Scenario 2)
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Figure A.72: SFRA Unscented Kalman Smoother 10% Sensor Noise Tuned Per-
formance in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics
Model (Scenario 3)
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Figure A.73: Unscented Kalman Smoother 10% Sensor Noise Untuned Performance
in Air-to-Air Missile Scoring Application with Continuous Velocity Dynamics Model
(Scenario 1)
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Figure A.74: Unscented Kalman Smoother 10% Sensor Noise Untuned Performance
in Air-to-Air Missile Scoring Application with Continuous Velocity Dynamics Model
(Scenario 2)
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Figure A.75: Unscented Kalman Smoother 10% Sensor Noise Untuned Performance
in Air-to-Air Missile Scoring Application with Continuous Velocity Dynamics Model
(Scenario 3)
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Figure A.76: Unscented Kalman Smoother 10% Sensor Noise Untuned Performance
in Air-to-Air Missile Scoring Application with Constant Acceleration Dynamics Model
(Scenario 1)
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Figure A.77: Unscented Kalman Smoother 10% Sensor Noise Untuned Performance
in Air-to-Air Missile Scoring Application with Constant Acceleration Dynamics Model
(Scenario 2)
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Figure A.78: Unscented Kalman Smoother 10% Sensor Noise Untuned Performance
in Air-to-Air Missile Scoring Application with Constant Acceleration Dynamics Model
(Scenario 3)
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Figure A.79: Unscented Kalman Smoother 10% Sensor Noise Untuned Performance
in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics Model
(Scenario 1)
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Figure A.80: Unscented Kalman Smoother 10% Sensor Noise Untuned Performance
in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics Model
(Scenario 2)
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Figure A.81: Unscented Kalman Smoother 10% Sensor Noise Untuned Performance
in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics Model
(Scenario 3)

166



A.11 SFRA Unscented Kalman Smoother Simulations with 10% Sensor

Noise Untuned

−1500
−1000

−500
0

500
1000

1500

0

500

1000

1500

2000

2500

3000
0

1000

2000

3000

4000

5000

 

East(+)/West(−) (m)North(+)/South(−) (m)
 

A
lti

tu
de

 (
m

) Aircraft Start Position
Aircraft Trajectory
Missile Start Position
Missile True Trajectory
Forward Filter
Smoothed Filter

(a) 3D Aircraft and Missile Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

5

10

15

20

25

30

35

40

45

50

time (s)

3−
D

 R
S

S
 p

os
iti

on
 e

rr
or

 (
m

)

 

 
SFRA UKF−Fwd
SFRA UKF−Bwd
SFRA UKS

(b) Mean Root-Sum-Squared Error in Missile
Position Estimate (100 Runs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

−10

0

10

20

x 
er

ro
r 

(m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

−10

0

10

20

y 
er

ro
r 

(m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

−10

0

10

20

z 
er

ro
r 

(m
)

time (s)

(c) Mean Error and Error Standard Deviation
of Missile Position States (100 Runs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−20

0

20

vx
 e

rr
or

 (
m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−20

0

20

vy
 e

rr
or

 (
m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−20

0

20

vz
 e

rr
or

 (
m

/s
)

time (s)

(d) Mean Error and Error Standard Deviation
of Missile Velocity States (100 Runs)

Figure A.82: SFRA Unscented Kalman Smoother 10% Sensor Noise Untuned Per-
formance in Air-to-Air Missile Scoring Application with Continuous Velocity Dynam-
ics Model (Scenario 1)
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Figure A.83: SFRA Unscented Kalman Smoother 10% Sensor Noise Untuned Per-
formance in Air-to-Air Missile Scoring Application with Continuous Velocity Dynam-
ics Model (Scenario 2)
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Figure A.84: SFRA Unscented Kalman Smoother 10% Sensor Noise Untuned Per-
formance in Air-to-Air Missile Scoring Application with Continuous Velocity Dynam-
ics Model (Scenario 3)
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Figure A.85: SFRA Unscented Kalman Smoother 10% Sensor Noise Untuned Per-
formance in Air-to-Air Missile Scoring Application with Constant Acceleration Dy-
namics Model (Scenario 1)

170



−200
0

200
400

600
800

1000

−2000

−1000

0

1000

2000
3500

4000

4500

5000

 

East(+)/West(−) (m)North(+)/South(−) (m)
 

A
lti

tu
de

 (
m

)

Aircraft Start Position
Aircraft Trajectory
Missile Start Position
Missile True Trajectory
Forward Filter
Smoothed Filter

(a) 3D Aircraft and Missile Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

30

35

40

45

50

time (s)
3−

D
 R

S
S

 p
os

iti
on

 e
rr

or
 (

m
)

 

 
SFRA UKF−Fwd
SFRA UKF−Bwd
SFRA UKS

(b) Mean Root-Sum-Squared Error in Missile
Position Estimate (100 Runs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−20

−10

0

10

20

x 
er

ro
r 

(m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−20

−10

0

10

20

y 
er

ro
r 

(m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−20

−10

0

10

20

z 
er

ro
r 

(m
)

time (s)

(c) Mean Error and Error Standard Deviation
of Missile Position States (100 Runs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−20

0

20

vx
 e

rr
or

 (
m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−20

0

20

vy
 e

rr
or

 (
m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−20

0

20

vz
 e

rr
or

 (
m

/s
)

time (s)

(d) Mean Error and Error Standard Deviation
of Missile Velocity States (100 Runs)

Figure A.86: SFRA Unscented Kalman Smoother 10% Sensor Noise Untuned Per-
formance in Air-to-Air Missile Scoring Application with Constant Acceleration Dy-
namics Model (Scenario 2)
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Figure A.87: SFRA Unscented Kalman Smoother 10% Sensor Noise Untuned Per-
formance in Air-to-Air Missile Scoring Application with Constant Acceleration Dy-
namics Model (Scenario 3)
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Figure A.88: SFRA Unscented Kalman Smoother 10% Sensor Noise Untuned Per-
formance in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics
Model (Scenario 1)
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Figure A.89: SFRA Unscented Kalman Smoother 10% Sensor Noise Untuned Per-
formance in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics
Model (Scenario 2)
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Figure A.90: SFRA Unscented Kalman Smoother 10% Sensor Noise Untuned Per-
formance in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics
Model (Scenario 3)
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A.12 Unscented Kalman Smoother Simulations with Sensor Dropout
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Figure A.91: Unscented Kalman Smoother Random Sensor Dropout Performance
in Air-to-Air Missile Scoring Application with Continuous Velocity Dynamics Model
(Scenario 1)
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Figure A.92: Unscented Kalman Smoother Random Sensor Dropout Mean Root-
Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor Avail-
ability with Continuous Velocity Dynamics Model (Scenario 1)
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Figure A.93: Unscented Kalman Smoother Random Sensor Dropout Performance
in Air-to-Air Missile Scoring Application with Continuous Velocity Dynamics Model
(Scenario 2)
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Figure A.94: Unscented Kalman Smoother Random Sensor Dropout Mean Root-
Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor Avail-
ability with Continuous Velocity Dynamics Model (Scenario 2)
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Figure A.95: Unscented Kalman Smoother Random Sensor Dropout Performance
in Air-to-Air Missile Scoring Application with Continuous Velocity Dynamics Model
(Scenario 3)
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Figure A.96: Unscented Kalman Smoother Random Sensor Dropout Mean Root-
Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor Avail-
ability with Continuous Velocity Dynamics Model (Scenario 3)

181



−1500
−1000

−500
0

500
1000

1500

0

500

1000

1500

2000

2500

3000
0

1000

2000

3000

4000

5000

 

East(+)/West(−) (m)North(+)/South(−) (m)
 

A
lti

tu
de

 (
m

) Aircraft Start Position
Aircraft Trajectory
Missile Start Position
Missile True Trajectory
Forward Filter
Smoothed Filter

(a) 3D Aircraft and Missile Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

−10

0

10

20

x 
er

ro
r 

(m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

−10

0

10

20

y 
er

ro
r 

(m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

−10

0

10

20

z 
er

ro
r 

(m
)

time (s)

(b) Mean Error and Error Standard Deviation
of Missile Position States (100 Runs)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−20

0

20

vx
 e

rr
or

 (
m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−20

0

20

vy
 e

rr
or

 (
m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−20

0

20

vz
 e

rr
or

 (
m

/s
)

time (s)

(c) Mean Error and Error Standard Deviation
of Missile Velocity States (100 Runs)

Figure A.97: Unscented Kalman Smoother Random Sensor Dropout Performance
in Air-to-Air Missile Scoring Application with Constant Acceleration Dynamics Model
(Scenario 1)
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Figure A.98: Unscented Kalman Smoother Random Sensor Dropout Mean Root-
Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor Avail-
ability with Constant Acceleration Dynamics Model (Scenario 1)
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Figure A.99: Unscented Kalman Smoother Random Sensor Dropout Performance
in Air-to-Air Missile Scoring Application with Constant Acceleration Dynamics Model
(Scenario 2)
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Figure A.100: Unscented Kalman Smoother Random Sensor Dropout Mean Root-
Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor Avail-
ability with Constant Acceleration Dynamics Model (Scenario 2)
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Figure A.101: Unscented Kalman Smoother Random Sensor Dropout Performance
in Air-to-Air Missile Scoring Application with Constant Acceleration Dynamics Model
(Scenario 3)

186



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

10

20

30
Missile Position Root−Sum−Squared Error (100 Runs)

time (s)

3−
D

 R
S

S
 p

os
iti

on
 e

rr
or

 (
m

)

 

 
UKF−Fwd
UKF−Bwd
UKS

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

10

20

30
Missile Position Root−Sum−Squared Error (1 Run)

time (s)

3−
D

 R
S

S
 p

os
iti

on
 e

rr
or

 (
m

)

 

 
UKF−Fwd
UKF−Bwd
UKS

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

A
va

ila
bl

e 
S

en
so

rs

time (s)

Figure A.102: Unscented Kalman Smoother Random Sensor Dropout Mean Root-
Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor Avail-
ability with Constant Acceleration Dynamics Model (Scenario 3)
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Figure A.103: Unscented Kalman Smoother Random Sensor Dropout Performance
in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics Model
(Scenario 1)
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Figure A.104: Unscented Kalman Smoother Random Sensor Dropout Mean Root-
Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor Avail-
ability with Coordinated Turn Dynamics Model (Scenario 1)
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Figure A.105: Unscented Kalman Smoother Random Sensor Dropout Performance
in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics Model
(Scenario 2)
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Figure A.106: Unscented Kalman Smoother Random Sensor Dropout Mean Root-
Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor Avail-
ability with Coordinated Turn Dynamics Model (Scenario 2)
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Figure A.107: Unscented Kalman Smoother Random Sensor Dropout Performance
in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics Model
(Scenario 3)
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Figure A.108: Unscented Kalman Smoother Random Sensor Dropout Mean Root-
Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor Avail-
ability with Coordinated Turn Dynamics Model (Scenario 3)
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A.13 SFRA Unscented Kalman Smoother Simulations with Sensor Dropout
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Figure A.109: SFRA Unscented Kalman Smoother Random Sensor Dropout Perfor-
mance in Air-to-Air Missile Scoring Application with Continuous Velocity Dynamics
Model (Scenario 1)
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Figure A.110: SFRA Unscented Kalman Smoother Random Sensor Dropout Mean
Root-Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor
Availability with Continuous Velocity Dynamics Model (Scenario 1)
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Figure A.111: SFRA Unscented Kalman Smoother Random Sensor Dropout Perfor-
mance in Air-to-Air Missile Scoring Application with Continuous Velocity Dynamics
Model (Scenario 2)
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Figure A.112: SFRA Unscented Kalman Smoother Random Sensor Dropout Mean
Root-Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor
Availability with Continuous Velocity Dynamics Model (Scenario 2)
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Figure A.113: SFRA Unscented Kalman Smoother Random Sensor Dropout Perfor-
mance in Air-to-Air Missile Scoring Application with Continuous Velocity Dynamics
Model (Scenario 3)
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Figure A.114: SFRA Unscented Kalman Smoother Random Sensor Dropout Mean
Root-Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor
Availability with Continuous Velocity Dynamics Model (Scenario 3)
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Figure A.115: SFRA Unscented Kalman Smoother Random Sensor Dropout Perfor-
mance in Air-to-Air Missile Scoring Application with Constant Acceleration Dynamics
Model (Scenario 1)
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Figure A.116: SFRA Unscented Kalman Smoother Random Sensor Dropout Mean
Root-Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor
Availability with Constant Acceleration Dynamics Model (Scenario 1)
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Figure A.117: SFRA Unscented Kalman Smoother Random Sensor Dropout Perfor-
mance in Air-to-Air Missile Scoring Application with Constant Acceleration Dynamics
Model (Scenario 2)
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Figure A.118: SFRA Unscented Kalman Smoother Random Sensor Dropout Mean
Root-Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor
Availability with Constant Acceleration Dynamics Model (Scenario 2)
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Figure A.119: SFRA Unscented Kalman Smoother Random Sensor Dropout Perfor-
mance in Air-to-Air Missile Scoring Application with Constant Acceleration Dynamics
Model (Scenario 3)
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Figure A.120: SFRA Unscented Kalman Smoother Random Sensor Dropout Mean
Root-Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor
Availability with Constant Acceleration Dynamics Model (Scenario 3)
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Figure A.121: SFRA Unscented Kalman Smoother Random Sensor Dropout Per-
formance in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics
Model (Scenario 1)
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Figure A.122: SFRA Unscented Kalman Smoother Random Sensor Dropout Mean
Root-Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor
Availability with Coordinated Turn Dynamics Model (Scenario 1)
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Figure A.123: SFRA Unscented Kalman Smoother Random Sensor Dropout Per-
formance in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics
Model (Scenario 2)
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Figure A.124: SFRA Unscented Kalman Smoother Random Sensor Dropout Mean
Root-Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor
Availability with Coordinated Turn Dynamics Model (Scenario 2)
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Figure A.125: SFRA Unscented Kalman Smoother Random Sensor Dropout Per-
formance in Air-to-Air Missile Scoring Application with Coordinated Turn Dynamics
Model (Scenario 3)
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Figure A.126: SFRA Unscented Kalman Smoother Random Sensor Dropout Mean
Root-Sum-Squared Error (100 Runs, 1 Run) in Missile Position Estimate and Sensor
Availability with Coordinated Turn Dynamics Model (Scenario 3)

211



Bibliography

1. Barton, David A. Paired Layering: The Argo Way of Simulation Construction.
National Air and Space Intelligence Center, December 2005.

2. Blackman, Samuel and Robert Popoli. Modern Tracking Systems. Artech House,
1999.

3. Brown, Robert G. and Patrick Y. C. Hwang. Introduction to Random Signals and
Applied Kalman Filtering. John Wiley and Sons, 3rd edition, 1997.

4. Julier, Simon J. and Jeffrey K. Uhlmann. “A New Extension of the Kalman Filter
to Nonlinear Systems”. The Proceedings of the American Control Conference,
Seattle, WA:1628–1632, 1995-1997.

5. Mahmood, Sultan, Jane Colee, Jim Luse, Dwight Payne, Joseph Taylor, and
Samuel Burkett. “Gulf Range Target Control Using Rajpo GPS Equipment, Test
Results and an Alternate Concept”. Position Location and Navigation Sympo-
sium, 306–313. 1992.

6. Maybeck, Peter S. Stochastic Models, Estimation and Control, volume 1. Navtech
Book and Software Store, 1994.

7. Maybeck, Peter S. Stochastic Models, Estimation and Control, volume 2. Navtech
Book and Software Store, 1994.

8. Musick, Stanton H. User’s Guide for Profgen, A Trajectory Generator. Air Force
Research Laboratory, December 2004.

9. Pastorelli, A., G. Torricelli, M. Scabia, E. Biagi, and L. Masotti. “A Real-Time
2-D Vector Doppler System for Clinical Experimentation”. IEEE Transactions
on Medical Imaging, 27:1515–1524, 2008.

10. Roumeliotis, Stergios I. and George A. Bekey. “Smoother-based 3D Attitude Es-
timation for Mobile Robot Localiza- tion”. Department of Electrical Engineering,
Robotics Research Laboratories, University of Southern California. 1998.

11. Sweeney, Maj Nicholas. Air-to-Air Missile Vector Scoring. Master’s thesis, Air
Force Institute of Technology, 2012.

12. Sweeney, Nicholas and Kenneth Fisher. “Air-to-Air Missile Vector Scoring Using
COTS Sensors”. JSDE/ION Joint Navigation Conf., Session A5: Missile/Pro-
jectile Applications. 2011.

13. Teixeira, Bruno Otavio Soares, Leonardo Antonio Borges Torres, Paulo Henriques
Iscold Andrade de Oliveira, and Luis Antonio Aguirre. “Flight Path Reconstruc-
tion Using the Unscented Kalman Filter Algorithm”. 18th International Congress
of Mechanical Engineering. 2005.

212



14. Titterton, David H. and John L. Weston. Strapdown Inertial Navigation Tech-
nology. The Institution of Electrical Engineers, 2nd edition, 2004.

15. 53d Weapons Evaluation Group. “USAF Air-to-Air Weapon System Evaluation
Program, Tyndall AFB, Fla.” 2011.

213



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22–03–2012 Master’s Thesis Sept 2010 — Mar 2012

Air-to-Air Missile
Enhanced Scoring with Kalman Smoothing

Gipson, Jonathon S., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GE/ENG/12-18

Intentionally Left Blank

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to Copyright protection in the United States.

Estimating the trajectory of an air-to-air missile provides many unique challenges. This is complicated by the high
velocities and extremely high turn rates attained by the missile during its short Time-of-Flight (TOF) en route to the
target. Kalman smoothers lend themselves to tasks such as post-flight trajectory estimation because they combine the
utility of forward and backward-propagating Kalman filters. The combined result is maximum accuracy for post-flight
missile scoring. Six Kalman smoothers (EKS, IEKS, SFRA EKS, UKS, IUKS, and SFRA UKS) are simulated. The
performance assessment is based on multiple Monte Carlo comparisons among all algorithms with a variety of missile
models and air-to-air engagment scenarios. This technical assessment provides the basis for recommendation of the
Unscented Kalman Smoother (UKS) as the DoD/USAF standard for post-processing and scoring live-fire missile data.

Kalman Smoother, UKS, EKS, IEKF, IEKS, UKF, EKF, Trajectory Reconstruction, Missile Scoring

U U U UU 239

Maj Kenneth Fisher

(937) 255–3636, ext 4677; kenneth.fisher@afit.edu


